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Abstract

Programming languages are fundamental to the use of a machine, and there are continu-
ously new languages being devised and published to tailor to domain-specific needs, or to
improve the general interaction between a programmer and a machine. Existing languages
are also continuously updated and improved.

Higher-level programming languages are more expressive in use. This enables program-
mers to develop programs efficiently and comfortably. However, all high-level languages
must be made concrete before or at runtime, and there is a lot of machinery involved with
this task.

One of the common interests in the implementation of programming languages is perfor-
mance optimization. This thesis designs and implements an alternative implementation of
the Python programming language, by applying ahead-of-time compilation rather than in-
terpretation, enabling a new class of performance optimizations. Additionally, we will shift
Python’s dynamic type system towards a more static one, reducing runtime type check-
ing overhead. The design proposes an execution model that allows for this type shifting.
The implementation of this design, Tython, leverages the LLVM compiler infrastructure
to obtain general optimizations, resulting in the emergent behaviour of type shifting. The
performance of the executables generated by the compiler is measured under a standard
set of benchmarks.

Keywords: python, compiler, LLVM, type system, computer, science
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Chapter 1

Introduction

The goal of this thesis is to propose and measure the performance impact of an alternative
implementation of the Python programming language. The reference Python implementa-
tion, CPython, is an interpreter implemented in the C programming language. We propose,
prototype and evaluate an ahead-of-time Python implementation. The proposed compiler
specializes some expressions over scalar values. We apply a novel approach to shifting
away from the runtime overhead incurred by Python’s dynamic type system where static
types can be infered from source code. Lastly, we run a benchmark suite to evaluate the
performance impact of this specialization and type shifting.

We introduce the concepts required to read this work as self-contained in chapter 2. In
chapter 3 we will show how we can design a flexible type system which can benefit from
general compiler optimizations to achieve type-shifting. In chapter 4 we introduce Tython,
an implementation of this design. Tython makes use of the powerful general optimizations
in the LLVM compiler toolchain to implement type shifting. These optimizations are not
designed to have anything to do with type systems, but in Chapter 1 Section 4, we show
how they are composed to achieve this emergent behaviour.

In chapter 5 we measure the performance of the language implementation and evaluate
the impact of the compiler design (specifically its specialization execution model and type-
shifting). In addition to measuring the design implementation, we will also measure the
performance of CPython and Codon, a static ahead-of-time compiler.

In chapter 6 we answer the research questions and make some concluding remarks.
Lastly, we list some suggestions for future work.

1 Motivation

The motivation for carrying out this project lies in the fact that the Python programming
language is currently very popular [42], but its reference implementation CPython is no-
toriously slow compared to other high-level programming languages [21]. There have been
many efforts to create a faster implementation of Python [2], including projects by large
corporations such as Google [49] and Facebook [16]. Recently, Codon was introduced as
an extensible high-performance Python ahead-of-time compiler implementation with static
typing [37].

CPython 3.11 implements many performance optimizations, and is on average 25%
faster than version 3.10 [10]. This includes the Specializing Adaptive Interpreter proposed
in PEP 659 [38]. This is instrumentation which can replace bytecode instructions by faster,
more specialized instructions when a code segment is sufficiently "hot".

The popularity of Python and the current work in optimizing CPython or creating
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alternative Python implementations focusing on performance make up the motivation for
this project. We aim to contribute to these recent efforts with, among other things, a novel
approach to dynamic type check reduction.

2 Research questions

Python is a dynamically typed language. This means that runtime type checks are re-
quired for most expressions, introducing a continual overhead throughout the lifetime of a
program.

We are particularly interested in the design of the Python reference implementation,
CPython [5]. This is the language’s most popular implementation. The Python language
specification does allow for type annotations, allowing users to express gradual or static
typing, but these annotations are completely ignored by the CPython implementation. The
language specification mentions that other tools could use those annotations to perform
type checking on Python programs [44], and instances of stand-alone type checkers [33]| and
static analysis tools [15] are available. However, no such tooling is provided by the reference
implementation. The Python documentation explicitly states that the specification is
aimed towards static analysis and bespoke runtime type checking, listing the use of type
hints for performance optimizations as a non-goal [§8]. Notably, the documentation re-
affirms Python’s strong commitment to dynamic typing:

“Python will remain a dynamically typed language, and there is no desire to
ever make type hints mandatory, even by convention.”

In this project, we explore a novel approach to propagating implicit source-level type
information for performance optimizations without foregoing this Pythonic dedication to
dynamically typed source code. The propogation of available type information is applied
to reduce type checks at runtime. We structure the implementation’s internal data model
to enable using a selection of general program optimizations for this purpose. The inference
of types and smaller number of runtime type checks is characteristic for statically typed
languages. Our approach of inference and type check reduction at compile time shifts the
dynamic type system of Python towards a more static one.

CPython is implemented as an interpreter. It can run in two configurations: as a
Read-Evaluate-Print-Loop (REPL) and as an interpreter of source code files. In both
cases, the source code is first compiled into a proprietary bytecode format, which is then
run in an evaluation loop. This approach allows for certain efficiencies; bytecode is much
easier to parse than source code (its format is much terser), and control flow graph (CFG)
optimizations can be applied at the bytecode level. However, the work of translating source
code into bytecode introduces overhead at the start of a program, and the runtime handling
of opcodes introduces continual overhead [50].

CPython represents all data as objects, and it comprises a large object execution model
to support this. The interpreter is implemented in C, and name resolution, type checking,
and function application all involve many levels of pointer indirection. There is run-
time performance to be gained from reducing this pointer indirection. Furthermore, the
representation of all values as objects creates some overhead. It could be beneficial for
performance to reduce this overhead by specializing operations on objects of scalar types.

The goal of this work is obtaining emergent type-shifting behaviour through the ap-
plication of general program optimizations. This involves static type inference and type
propagation. Furthermore, we apply specialization of operations on scalar values. We then
wish to quantify the performance impact of this type shifting and specialization.



1.3. Related Work 4

This leads us to the following research questions:

1. What static type information can be inferred from a Python program without type
annotations?

2. How can we propagate static type information to reduce dynamic type checks?
3. How can we specialize runtime values to circumvent the object execution model?

4. What is the performance impact of the reduction of dynamic type checks and the
specialization of runtime values?

3 Related Work

In this section we’ll take a look at some other work that has been done in this area before.
This helps us understand what’s already known and what questions are still unanswered.
By briefly summarizing previous studies and their findings, we can see where our research
fits in and why it’s important. This section also helps us decide on the best methods to
use for our study based on what has worked well or hasn’t been done in the past.

3.1 Codon

Codon is a static ahead-of-time Python compiler, which creates binary executables from
Python source code [37]. It focuses on enabling Domain Specific Languages (DSLs) in
Pythonic code. The implementation leverages LLVM as a backend, giving it access to
many of LLVM’s out-of-the-box general optimizations [31]. Codon also implements the
proprietary Codon Intermediate Representation (CIR), which lies at a higher level of ab-
straction than LLVM IR. The compiler allows for domain-specific optimizations on the
CIR format before lowering it to LLVM IR. The result of a CIR optimization pass is it-
eratively fed back into the pipeline at the type checking stage, a maneuver Codon calls
bidirectional compilation. After all CIR-level optimizations are applied, the code is lowered
to LLVM IR. Lastly, LLVM’s general optimizations are applied and the compiler artifacts
are emitted.

Codon applies a novel approach to bidirectional static type inference to resolve unanno-
tated variable declarations. It is called LTS-DI, and based on Hindley-Milner (HM)-style
type inference. LTS-DI handles common Python constructs by means of monomorphiza-
tion (similar to C++ template instantiation [46]), localization (treating each function as an
isolated type-checking unit, for which Python variable scope semantics must be restricted),
and delayed instantiation. If this static inference leads to conflicts, compilation fails. This
leads to many valid Python programs being rejected by Codon. Codon must statically
map all Python types to equivalent’! LLVM types.

The Codon compiler is similar to our proposed implementation in terms of being a
static ahead-of-time compiler that leverages LLVM. However, Codon does not track any
type information at runtime, making dynamic typing impossible [37]. It is also hard to
tweak and evaluate the individual performance impact of its constituent parts. This makes
Codon unsuitable for answering the research sub-questions.

'This equivalence is not strictly valid according to the Python language specification [7]. For instance,
Python’s arbitrary-sized scalar literals are converted to 64-bit floating-point or integer primitives [37].
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3.2 Mypy

Mypy is a static type checker for annotated Python programs. It allows for gradual typing,
"combining the expressive power and convenience of Python with a powerful type system
and compile-time type checking" [33]. Mypy is effective in reducing type-related errors
in Python programs [20]. It evaluates the standard Python type annotations introduced
in PEP-484 [45], but plays no role at runtime. It therefore has no effect on the runtime
performance of Python programs.

3.3 Reticulated Python

Reticulated Python [47] brings gradual typing to Python. Users can annotate Python
source code using Python’s own syntactic type annotations, for which Reticulated Python
will perform and generate the appropriate static and runtime type checks. The compiler
provides a special dynamic Any type to indicate dynamic values. Reticulated Python ac-
cepts pure, unadorned Python code by implicitly attributing the Any type to non-annotated
values. It rejects programs with statically detectable errors and generates runtime type
checks and casts on the boundary between annotated and non-annotated code. Reticulated
Python is implemented as a source-to-source translator, and the runtime type checks it
generates are often followed by internal type checks in the CPython runtime (even when
Reticulated’s static type system has proven they are unnecessary). This means that pro-
grams generated through Reticulated Python are never faster than CPython, and show
significant slowdowns of up to 10x [47] compared to CPython. Performance optimization
is not a goal of Reticulated Python.

3.4 TypeScript

TypeScript is an extension of the JavaScript programming language. JavaScript is a dy-
namically typed language. TypeScript adds static typing to JavaScript. Interestingly, it is
not a sound type system, but it can have practical use [1].

TypeScript accepts pure, unadorned JavaScript programs. In that extreme case, a
program’s correct typing cannot be guaranteed, but it makes the TypeScript compiler very
welcoming to JavaScript developers. In this scenario, all type checks will be performed
dynamically. As the programmer adds more type annotations to the program, the static
type checker will be able to guarantee the correct typing of portions of the program. This
is a good example of applying gradual typing.

However, since the TypeScript compiler is "simply" a transpiler to JavaScript, the
JavaScript runtime engine will still perform dynamic type-checking on the entire program.
This means that even though we can get a good deal of type safety from TypeScript, in
the end we are doing double work and obtain no performance benefits.

There are adaptations of TypeScript which achieve soundness, such as Safe TypeScript
[36] and T'S* [41], which introduce runtime type checks. The cost of this soundness is the
introduction of runtime performance overhead for dynamically typed code.

3.5 Cinder and Static Python

Cinder is an open-source Python 3.10 implementation developed and maintained by Meta.
[16] It is oriented on high-performance and is used in production environments, such as
the main Instagram webservers where the project originated. It is a fork of CPython,
but offers some interesting optimizations selected to speed up the bottlenecks identified
by profiling Instagram’s production webservers. It introduces "immortal instances", which
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allows for certain object instances to be excluded from garbage collection (GC). This is
a rather significant optimization of about 5% in the Instagram use case [16, 22|, because
a single server instance will spawn many worker processes which are dependent on data
in the parent process. Updating the reference count of an object of the parent process
from a child process forces the OS to copy the entire memory page. The optimization for
Instagram does introduce a performance penalty on on straight-line code. It introduces
some overhead in the form of a branching statement guarding all GC operations on objects,
to determine whether they take part in garbage collection or not.



Chapter 2

Background

In this section we will introduce and describe the background knowledge required to un-
derstand the literary environment and academic contribution of this project. It aims to
be self-contained, such that, though provided, no references need to be followed to have
a working understanding of the relevant topics in this work. A general understanding of
core computer science concepts and basic mathematical notation is assumed.

1 Program execution

Regardless of the language of implementation, programs are written to be executed. This
means taking some data as input, and transforming it into some output. To achieve this, the
operations and abstractions of the programs must themselves be transformed into machine
instructions. This transformation can be done in two different ways, distinguished by when
this program transformation is applied. There is the method of interpretation, where the
result of the transformation is immediately executed on the host machine. There is also
compilation, where the result of the program transformation is stored for later execution on
the host machine (or another machine of the same platform and architecture). The latter
method also allows for cross-compilation, where a program is transformed to machine
language of a target platform different from the host machine.

Some language implementations mix the principles of interpretation and compilation,
such as the compilation of source code into an intermediate program representation for
later interpretation or further compilation. This again boils down to the composition of
the two fundamental strategies of program execution.

1.1 Interpretation

An interpreter for a programming language works by directly executing the instructions
in the source code line-by-line, without translating the entire program into machine code
upfront. The interpreter reads a statement from the source code, analyzes its meaning,
and performs the specified operations on the fly. This involves parsing the code to under-
stand its structure, performing semantic analysis to ensure the operations are valid, and
then executing the operations using a combination of built-in functions and dynamic code
evaluation. Interpreters typically handle tasks such as variable binding, control flow, and
function calls at runtime, allowing for interactive execution and debugging. This approach
contrasts with compilers, which translate the entire program into machine code before
execution, offering faster execution speed but lacking the immediacy and flexibility of an
interpreter.
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Definition 1 An interpreter I for language L , written in language L, is a program which
implements a partial function: If" : (Prog® x D) — D such that If"(ProgL,Input) =
Prog” (Input) where D is the set of possible input data, Input € D, and Prog" is the set
of programs which can be expressed in language L [24].

It should be noted that in Definition 1 the input data of the two programs is assumed
to be the same. If this is not the case, that data must also be transformed [24] through
some morphism ¢ : D x D, such that I comprises ¢ and its codomain is D,. We have
If" : (Prog* x D) — D, and IfO(ProgL,Input) = ¢(Prog"(Input)).

REPL

A Read-Evaluate-Print Loop (REPL) is an interactive mode for an interpreter which reads
(a snippet of source code), evaluates (the snippet), and prints (the result if the snippet is
an expression). It allows users to type in and immediately run program constructs, such as
statements and expressions, without writing them to a file. This is a quick way of running
code snippets in an interactive environment.

1.2 Compilation

A compiler is similar in function to an interpreter. The main difference is the time of
program transformation. Where an interpreter transforms and executes a statement at
runtime, a compiler does all the transformation work before a statement is ever executed.

When talking about compilers specifically, it is useful to make a distinction between
the two time-separated processes of program transformation (compile-time) and program
execution (runtime). In fact, we can model our computing hardware as an interpreter of
machine code (it transforms instructions in memory to electrical impulses) and find that
a compiler is only concerned with program transformation and is not involved in program
execution. Do note that program transformation may require partial program execution,
such as the evaluation of constexprs in a language like C++ [4].

1.3 Abstraction Reduction

We distinguish between interpretation and compilation by their time of application. We
may also consider differences in the outputs of multi-stage program transformation. We
look at instances where a transformation does bring the abstraction of the source program
down towards machine language, but to some intermediate level of abstraction between
source code and machine code. We observe that the transformation ¢ : A; x M, ¢ =
¢ o ¢" is a composition of ¢ : A; x A; and ¢ : A; x M. Implementations of this
intermediate representational approach may perform optimizations and transformations
on the intermediate level of abstraction A; through closures 1 € M where M : A?, and
choose to either continue the descent to machine language directly, or store the intermediate
representation in memory or on disk for later evaluation. Note that ¢’ typically performs
compilation; ¢” may also perform compilation, but it could be an interpreter instead.

1.4 Just-in-time compilation

Just-in-time (JIT) compilation is a hybrid approach to program execution [19]|. Unlike
Ahead-of-Time (AoT) compilers, which translate the entire source code into machine code
before execution, JIT compilers translate code at runtime, converting it into machine code
on-the-fly as needed. This process involves initially compiling or interpreting suboptimal
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code and identifying frequently executed parts, known as "hot spots." When a hot spot is
detected, the JIT compiler compiles this portion of the code into optimized or specialized
machine code, which is then executed directly by the CPU. This on-the-fly compilation
allows the JIT compiler to apply aggressive optimizations based on the actual runtime
behavior of the program, leading to significant performance improvements.

A key advantage of JIT compilation is its ability to adapt to the program’s execution
environment. By compiling code at runtime, the JIT compiler can make optimization deci-
sions based on the current state of the system, including available hardware resources and
runtime conditions. This dynamic adaptability often results in more efficient execution
compared to static compilation, which relies on compile-time assumptions. Additionally,
JIT compilation can leverage profile-guided optimizations, where runtime profiling infor-
mation is used to inform and refine optimization strategies, further improving performance.

The warm-up phase is a critical aspect of JIT compilation, where the runtime system
initially executes the program to gather profiling information and identify hot spots. Dur-
ing this phase, the program may run slower than an AoT-compiled counterpart. However,
as the runtime system collects data on frequently executed code paths, it starts compil-
ing these hot spots into optimized machine code. This transition from interpretation to
compilation typically leads to a performance boost, as the program gradually shifts from in-
terpreted execution to running predominantly optimized native code. The warm-up phase
is essential because it allows the runtime system to make informed decisions about which
parts of the code to optimize, balancing the overhead of compilation with the benefits of
executing optimized machine code.

2 Common Compiler Pipeline

Token Decorated
Stream ; AST

Source Code Lexing »| Parsing AST; Semantic > IR Code

Analysis Generation
Intermediate
Representation R MIR E tabl
xecutable
(IR) Optimization > Code. > Asse.mblly >
Generation and Linking

FIGURE 2.1: A common compilation pipeline.

A compiler plays a crucial role in the software development process by translating
programs written in high-level programming languages into machine code that a computer’s
processor can execute. Figure 2.1 shows a high-level overview of a common compiler
pipeline [19].

2.1 Lexical Analysis (Lexing)

The compiler pipeline begins with lexical analysis, often referred to as lexing. The primary
objective of this phase is to convert the raw source code into a sequence of tokens, which
are the basic units of meaning in the programming language. The lexer, or lexical ana-
lyzer, reads the input source code character by character, grouping characters into tokens
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based on predefined patterns. These tokens represent syntactic elements such as keywords,
identifiers, literals, and operators.

For instance, the input int x = 42; would be tokenized into a sequence like [INT_KEYWORD
, IDENTIFIER(x), ASSIGNMENT_OP, INT_LITERAL(42), SEMICOLON]. Each token is typically
associated with a type and, in some cases, a value. The output of the lexical analysis phase
is a stream of tokens that serves as the input for the next stage, syntax analysis.

2.2 Syntax Analysis (Parsing)

Following lexical analysis, the compiler moves on to syntax analysis, or parsing. The
parser’s goal is to construct a syntactic structure from the token stream produced by the
lexer. Using a context-free grammar, the parser analyzes the sequence of tokens and builds
a parse tree, which represents the syntactic structure of the source code according to the
grammar rules.

Often, the parse tree is transformed into an abstract syntax tree (AST). The AST is
a simplified, hierarchical representation that abstracts away some of the syntactic details
present in the parse tree, focusing instead on the essential structural elements. For example,
the input int x = 42; might yield an AST representing an assignment statement with
nodes for the declaration, the variable x, and the literal 42.

The parser ensures that the source code conforms to the syntactic rules of the language,
and its output—a parse tree or AST—vprovides a structured foundation for further analysis
and transformation.

2.3 Semantic Analysis

Semantic analysis follows parsing and serves to ensure that the program’s constructs are
semantically valid according to the language rules. This phase involves checking for type
errors, resolving scope and symbol references, and verifying other semantic rules specific
to the language. The semantic analyzer traverses the AST, ensuring that the types of
expressions are compatible, variables are declared before use, and functions are called with
the correct arguments.

For example, in the statement int x = 42;, the semantic analysis phase would confirm
that the variable x is correctly declared as an integer and that the assignment is type-
compatible. The semantic analyzer often annotates the AST with additional information
such as types and symbol table references, enriching the tree with semantic context that
aids in subsequent stages.

2.4 Intermediate Code Generation

Once semantic analysis is complete, the compiler proceeds to intermediate code generation.
The goal of this phase is to translate the AST into an intermediate representation (IR). The
IR is a lower-level abstraction of the source code, designed to be both machine-independent
and easy to analyze and transform. Common forms of IR include three-address code and
static single assignment (SSA) form.

For example, the assignment int x = 42; might be translated into an IR instruction
like %x = 42. This intermediate code serves as the basis for optimization and is intended
to facilitate transformations that enhance the performance and efficiency of the final exe-
cutable.
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2.5 Optimization

Optimization is a critical phase in the compiler pipeline where the intermediate code is im-
proved for performance and efficiency. The optimizer performs various transformations on
the IR to eliminate redundancies, improve execution speed, and reduce resource consump-
tion. Common optimization techniques include constant folding, dead code elimination,
loop unrolling, and function inlining.

During constant folding, for example, expressions with known constant values are eval-
uated at compile time rather than runtime. Dead code elimination removes code segments
that do not affect the program’s outcome, thereby streamlining the code. These optimiza-
tions ensure that the final machine code runs more efficiently on the target hardware.

2.6 Code Generation

Following optimization, the compiler enters the code generation phase, where the optimized
IR is translated into machine code. This phase involves mapping high-level operations to
low-level instructions specific to the target CPU architecture, allocating registers, and
selecting appropriate machine instructions.

For instance, an IR instruction like x = 42 might be translated into a machine-specific
instruction such as MOV R1, #42. The code generator aims to produce efficient and correct
machine code that closely matches the capabilities and constraints of the target hardware.

2.7 Assembly and Linking

The final stages of the compiler pipeline are assembly and linking. The assembler converts
the generated machine code into object code, which is a binary representation of the
machine instructions. The linker then combines multiple object files, resolves external
references, and incorporates library code to produce a single executable binary. Note that
when linking against dynamic libraries, those libraries are not included in the executable
and form part of the executable’s runtime.

During linking, the linker ensures that all function calls and variable references are
correctly resolved, combining various code modules into a cohesive executable. The output
of this phase is a standalone executable file that can be run on the target machine.

3 Static Single Assignment Form

Static Single Assignment (SSA) form is a property of intermediate representations (IR)
in compilers. It plays a crucial role in optimizing code. The SSA form simplifies many
compiler optimizations by ensuring that each variable is assigned a value exactly once,
and that every variable is defined before it is used. This representation helps improve the
efficiency and accuracy of program analysis and transformation.

SSA form was introduced by researchers in the late 1980s as a response to the increas-
ing complexity of program optimization in (then) modern compilers. Certain compiler
optimizations, such as constant propagation, dead code elimination, and common subex-
pression elimination, were challenging due to the frequent reassignments of values to the
same variables in intermediate representations (IRs). The concept of Signle Static Assing-
ment evolved as a way to streamline these optimizations, making them both more efficient
and easier to implement.

In SSA form, each variable is assigned exactly once, and each variable is defined at one
unique point. When a variable would otherwise be assigned multiple times, SSA introduces
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new "versions" of the variable for each assignment. For example, instead of assigning a
value to a previously defined variable x, the compiler generates new variables x1, 2, ..., Zn,
for each subsequent assignment.

A key concept of SSA form is the ¢-function (phi-function), which is placed at join
nodes of a control flow graph (CFG). These are points in the code where multiple control
flow paths converge. The ¢-function merges different versions of a variable coming from
different paths in the CFG. For example, Figure 2.2 shows an if-else construct in a CFG
where the ¢-function is used to select the correct variable version depending on the path
the program takes at runtime.

Def-use chains are also simplified by SSA form. A def-use chain relates the definition
of a variable with the set of its uses. In SSA form, this information is combined efficiently
because the uses of a variable are generally close to their definition; they are replaced by a
new version upon assignment or at CFG joins. Use-def chains relate the use of a variable
to their definition, and are fairly trivial to compute in SSA form. The use-def chain is
implicitly encoded and maintained by the edges of an SSA graph — this is how the SSA
graph is constructed.

Converting a program into SSA form involves two main steps: the renaming of variables
and the insertion of ¢-functions. During renaming, each assignment to a variable creates
a new version of that variable. This ensures that each variable is assigned exactly once.
Inserting ¢-functions involves identifying points in the CFG where variables from different
paths merge and introducing ¢-functions at the start of these joins to select the correct
version.

y<0
X «— input()
(x ==42)?
/true false
yq— 1 Yo — 2
Y3 < §(y1, ¥o)
print(ys)

FIGURE 2.2: The phi-function inserted at a CFG junction, adapted from [34].

To generate executable code, SSA form must usually be converted back to a non-SSA
form at some stage. This means eliminating ¢-functions (replacing them with some runtime
machinery) and merging the different variable versions. THe conversion must ensure that
the resulting code remains semantically equivalent to the SSA form. This process is called
destruction.

The downside of SSA form is that it introduces a additional complexity in handling
variables that range across different scopes, as is the case with loops and other nested
constructs. Techniques like minimal SSA form and pruned SSA form have been developed
to address these challenges [34].
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3.1 Compiler optimizations

SSA significantly simplifies many compiler optimization techniques.

Constant Propagation SSA form significantly enhances the process of constant prop-
agation. This compiler optimization technique substitutes the values of known constants
in expressions. In SSA form, each variable is assigned exactly once, and the use-def chain
relates every use of a variable to a single unique definition. This greatly simplifies the
tracking of constant values throughout the program.

Dead Code Elimination SSA form makes it easier to identify and eliminate vari-
ables that are never used: since each variable is assigned exactly once, the corresponding
assignment can be safely removed if that variable has no uses.

Register Allocation SSA simplifies the task of register allocation by reducing the
complexity of variable lifetimes. In Static Single Assignment (SSA) form, each variable is
assigned exactly once, which makes the flow of values through variables more explicit and
simplifies data flow analysis. This clear assignment is beneficial for register allocation in
compilers. To allocate registers efficiently, an interference graph is constructed where each
node represents a variable, and an edge between two nodes indicates that the corresponding
variables are "live" simultaneously and therefore cannot share the same register.

Register allocation is then treated as a graph coloring problem, where each "color"
represents a register. Under SSA, the strictness property of a procedure is equivalent to the
dominance property. A dominance analysis (resulting in a dominance tree) on a program
in SSA form, a liveness analysis, and an interference graph (which is an intersection in live
ranges), is a chordal graph [34]. This is important to the problem of register allocation,
since chordal graphs have linear-time solutions for graph coloring. In general graphs, this
is problem is NP-complete.

4 The LLVM toolchain

LLVM started as a research compiler toolset at the University of Illinois Urbana-Champaign,
for experimentation with static and dynamic compilation techniques for any programming
language [32]. Since then, it has grown into an umbrella project which comprises a number
of different subprojects, successful in both commercial and open-source production systems
as well as academic research. LLVM’s most notable projects are briefly introduced below.

4.1 LLVM Core

LLVM Core [30] revolves around the LLVM Intermediate Representation (IR) format. It
comprises the development APIs for bespoke IR generation. The project includes IR-level
code optimizers which work independently from source languages and target platforms.

Figure 2.3 shows a high-level overview of the LLVM Core compilation pipeline. The
pipeline translates source code of an arbitrary programming language into machine in-
structions of an arbitrary platform. The pipeline is split up into two discrete stages. There
is the frontend, which translates concrete source code into the general intermediate repre-
sentation (IR) format. There are optimizers and code analysis tools which can transform
this IR. Lastly, this IR is translated into Machine IR (MIR) by a target-specific backend.

This frontend /backend split means that developing a frontend for a concrete language
makes it immediately available to all existing platforms. Similarly, developing a backend
for a concrete target makes all existing frontends immediately available to that specific
platform.
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_) —
Source » IR » MIR

Frontend Optimizer
Backend

FIGURE 2.3: A high-level overview of the LLVM Core compilation pipeline

Another strength of this approach is that IR-level optimizations and analysis can be
applied independently of source language or target platform. This makes general optimiza-
tions such as constant propagation, dead code elimination, and loop unrolling [31] available
to all source languages and target platforms’.

There is no common structure imposed on the implementations of LLVM frontends or
backends. As long as they respectively produce and consume valid LLVM IR, they can be
used in the LLVM pipeline and benefit from the source language and platform agnostic
optimizations at the IR level. However, LLVM Core does expose an actively maintained
C++ API for implementing both frontends and backends.

Frontends will essentially need to perform all steps of traditional compilation (see Chap-
ter 2 Section 1.2), with the key difference being that instead of emitting machine code
directly, they emit LLVM IR.

4.2 Clang

Clang [3] is an LLVM frontend implementing C-like languages such as C, C++, Objective-
C, and OpenCL. It aims to be fast and have a low memory profile. It features several
clients, such as static analysis and refactoring, and provides expressive diagnostics. It is
one of the most popular production-ready C compilers available today [17].

5 The Python Programming Language

Python is a general-puropse programming languagee, originally designed and developed at
the Centrum Wiskunde & Informatica in the late 1980’s [43| by Guido van Rossum. There
have been three major releases of Python, the most recent version being Python 3.12.

Python is one of the most popular general-purpose programming languages in the world
today [42]. The use cases of the language span from writing short-lived scripts (similar to
how one might use BASH scripts), to large-scale production applications [16,18]. It has a
notable role in the development and implementation of machine learning and Al systems.
The design philosophy of Python focuses on the readability of source code.

The language is a multi-paradigm language, supporting imperative and functional pro-
gramming styles. It can natively conveniently express object-oriented programming. It is
dynamically typed. It features duck typing; "if it quacks like a duck and wags like a duck,
it’s probably a duck". Academically, this practise is called structural typing (see Chapter

!This does not mean that a general optimization is always effective on all source languages. For instance,
a programming language with no loop semantics may not benefit from loop unrolling.
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2 Section 6). Together with the dynamic typing of variables, this creates Python’s late
binding access operators (including function name resolution).

5.1 The Selection of Python

The selection of Python for this project was made based on a few simple inclusion citeria.
The research goal is set to measure the performance impact of type-shifting a dynamic
language using LLVM’s general optimizations. We choose an existing language to exper-
iment on, to avoid contriving a language specification which is tailored for this purpose.
The language must be dynamically typed. In an attempt to achieve maximum impact, the
language should also be general-purpose and widely used in practise. Lastly, there should
be an authoritive open-source reference implementation, so that that can be used as the
foundation to experiment on, or so that a bespoke minimal implementation could be based
on this reference. Keeping the foundation for the experimental setup close to the reference
implementation creates a claim to comparability.

Python is the one language which fits all of these criteria the closest. It is dynamically
typed and general-purpose. According to the Tiobe Index, is currently the most popular
programming language in the world [42]. The Python organization also maintains a refer-
ence implementation named CPython [6], which is developed in tandem with the language
specification. It is by far the most widely used Python implementation [44].

Jun 2024 Jun 2023 Change Programming Language Ratings Change
1 1 [ Python 15.39% +2.93%
2 3 g cH++ 10.03% -1.33%
3 2 v e © 9.23% -3.14%
4 4 : Java 8.40% -2.88%
5 5 @ C# 6.65% -0.06%
6 7 JS JavaScript 3.32% +0.51%
7 14 GO Go 1.93% +0.93%
8 9 SQL 1.75% +0.28%
9] 6 v @ Visual Basic 1.66% -1.67%
10 15 @ Fortran 1.53% +0.53%

FIGURE 2.4: The 10 most popular programming languages today (www.tiobe.com)
[42].

Figure 2.4 shows the most popular languages in use today. Python is the only? dy-
namically typed language in the top-5. In the top-10 we also find the dynamically typed
and immensely popular JavaScript, though its ubiquity is still mostly limited to the do-
main of webtechnologies, where it has a de-facto monopoly. This arguably makes it less
general-purpose than Python. JavaScript also lacks a reference implementation.

2C# does feature the dynamic keyword, allowing for the type of individual variables to be determined
at runtime. This is effectively a syntactical alternative to the verbosity of hiding from the language’s
default static type system through object type casting.
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5.2 CPython

CPython [6] is the Python organization’s reference implementation. It can be consid-
ered both a compiler and an interpreter, since it can compile Python source code into a
proprietary bytecode format Ahead-of-Time, which is then interpreted at runtime.

Python’s data model considers all data to be of the object type. Even constants and
literals are subclasses of this top-level type. Classes, functions, methods, numbers, strings,
and types — all inherit from object. CPython is implemented in C. The C language does
not support polymorphism, instead providing some basic data types from which a (library)
programmer can create abstractions. The way the CPython programmers overcome this
is by taking care that all Python objects start with identical memory layouts. The first
n bytes describe the same fields for all objects. These fields the objects unique identifier,
a reference counter, and a reference to its type. Such a type is an object by itself, whose
type field refers to the "type" type. Type objects provide further information about the
properties and capabilities of the objects that reference them.

Since types are implemented as objects in CPython, they contain a pointer to a type.
For types, the reference type is a singleton type instance called "type", which is an object
by itself. This singleton instance is special, in that its type pointer points to itself (that
is, the type is its own definition).

An object’s type can never change in Python. This is according to the language spec-
ification. A consequence of this is that CPython can simply allocate enough memory to
hold any instance of the type (which is lower-bound by sizeof(T)) and initialize it, which
is also a discrete step in the Python language design. The system keeps track of a pointer
to that memory location. The interpreter can at any point in runtime rediscover the size
of an object by checking its type. It can cast the pointer to a pointer to an instance of the
actual object type, thus giving the implementation access to all extended fields.

The CPython Type System

CPython implements Python’s dynamic "duck" typesystem. Even though the language
specifiaction does allow for type hints in its syntax, CPython does not process any type
annotations. CPython implements a type system comprising the runtime evaluation of
which operations are legal and implemented on a given object type, what type conversions
are allowed, and the concepts of (runtime) class inheritance. It is late-binding, resolving
names to variables, functions and class methods at runtime. It implements hash-tables
and caching to improve the performance of these dynamic resolutions.

6 Type systems

Type systems allow a machine (an interpreter or a compiler) to determine the properties
of variables and values in a program. Mitchell [26] defines types as collections, and values
as members of those collections.

The properties of a value fundamentally determine under what operations they have
well-defined semantics. For instance, an addition operation over a floating point value and
a string value may not have well-defined semantics in the language. A type checker may
therefore choose to reject such operations. The property of a system rejecting operations
with undefined semantics on values of a given type is known as type safety.

We distinguish two classes of type systems, distinct in the time at which they per-
form type checking. Note that this distinction is similar to that between compilation and
interpretation.
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6.1 Dynamic typing

Dynamically typed languages perform type safety checks at runtime. Implementations
keep track of a value’s type tag. In this way, assigning a value to a named variable can
dynamically change the type associated with that variable at runtime.

Dynamic typing decouples the concept of a named variable (a labeled reference, change-
able — wariable) from the concept of types and values. Language implementations may
or may not perform any static type checking on dynamic languages, but must in any case
evaluate the type associated with a variable at runtime.

6.2 Static Typing

Statically typed languages associate a type with a variable. The type of a variable is
determined at its declaration, and only values of that type can be assigned to that variable.
This means that, without running the program, we can check whether operations (such
as assignment) on a variable, and operations on any value associated with that variable
conform to its type.

This does not mean that the evaluation of types in these languages are restricted only
to compile-time. In particular, object-oriented languages that support downcasting, such
as Java, may require runtime type checking to determine if a downcast is valid.

Statically typed languages often allow for generalization over types (generic typing),
providing similar flexibility to dynamically typed languages in terms of value assignment.
This, again, is particularly prevalent in object-oriented languages such as Java and C#,
where concepts such as inheritance, downcasting, and type erasure play an important role.

6.3 Gradual Typing

In gradual type systems, programmers can express aspects of both static typing and dy-
namic typing in the same codebase. The type checker is then tasked with finding and
rejecting incompatibilities between the known parts of a type [39]. This approach involves
type comnsistency in the static semantics of the gradual system, and runtime type casts in
the dynamic semantics. In this hybrid approach, the programmer can leverage the flex-
ibility of dynamic typing where desired, while maintaining the safety (and possibly the
performance benefits) of static typing.

Gradual type systems are often introduced to incrementally change an existing dynam-
ically typed code base to a statically typed one. Such gradual type systems accept the
entire existing dynamic code base, statically checking more and more annotated regions of
code as they are added by the project maintainers. The recent popularity of TypeScript
is an example of this [48].



Chapter 3

Design

In this chapter we introduce the idea of performance optimization through type-dependent
operator specialization and a reduction of runtime type checking through a novel approach
to source language-agnostic type inference through the common constant propagation and
branch elimination compiler optimizations.

The compiler design is based on a few simple mantras:

1. A user should be able to write Pythonic code.
2. Semantics are second to performance.

3. The reference implementation is always right (even when it is not).

1 The Type System

The distinguishing feature of a dynamic language is runtime type checking. To achieve
this, we need to have type information available at runtime.

In this type system, a Variable : Name x Value is an ordered pair relating a name
to a value. Names are unique labels corresponding to symbols in source code. Values are
also ordered pairs, defined as Value : T x U. The set T := Prim U {Object} is a finite
enumerated set, and is the union of the set of primitive types Prim := {Integer, Floating-
Point}, and a singleton set containing the built-in object types;

Object := {IntegerObject, FloatObject, StringObject, ListObject, TupleObject,
DictionaryObject,etc.}. U is the universal set of bit-strings, representing contiguous
(virtual) computer memory. The type of a variable can be evaluated with the function
type : Variable — T.

Types have a set of values they can define, which is determined by the relation I :=
U x T, such that clt iff ¢ € U is an instance of t € T. Inversely, clt iff t € T can define
¢ € U. Assuming the bitwidth [ of instances of all elements in T is consistent, we can
restrict U to length [, such that U, := {c € U.|¢| = I}}, U, C U.

The unparameterized use of bit-strings makes membership of I trivial for any bit-string
and type: Ve € Uj,t € T.clt. This also allows for arbitrary type conversions between equal-
length byte strings (the bits of a 64-bit float can also define the bits of a 64-bit integer).
To avoid semantically meaningless interpretation of bit-strings and implicit conversion, we
create an inequivalence between two values of the same content but with different types:

!Fixing I to 64 conveniently gives us all bit-strings that can fit in a 64-bit CPU register.

18
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Definition 2 Two values are equivalent iff their types and their content are equivalent:
Yo, v" € Value.type(v) = type(v') A content(v) = content(v') <= v ="1'.

Note that to avoid arbitrary equivalence of two values under a fixed [, it is enough
to show that type(v) # type(v'). The interpretation of a value under a given type is
defined as the function Y : (T' x T'x U) + U. Similarly, we define the restricted function
Yvawe : (T x Value) — U;. Y allows us to define the semantics of (implicit) type
conversion.

2 A Specializing Data and Execution Model

We propose a specialization strategy for two data types, the Integer and the Floating-
Point. We define the specialization data structure as an ordered pair, comprising a tag
and a content field; Spec := Tag x U. The interpretation of the content field depends on
the value of the tag in the tuple. The tag field is an enumerator, defined as being one of
Tag := {0, 1,2} where 0 — Integer, 1 — FloatingPoint, and 2 — Object. The tag of a
value v € Spec can be obtained through the 0% projection map 7 : Spec — Tag = projo.
The content of a value can be obtained through the 1% projection map pu : Spec +— U =

Projy.

2.1 The Binary Representation of Type Instances

The tag field determines the semantics of the interpretation of a value’s content field, with
a function 7 : Tag x Spec — U. What the function 7 allows us to do, is to encode the
specialization of low-level instructions that expect a certain bit-layout for their operands.
This bit-layout goes beyond the traditional type system of some high-level programming
languages, but is necessary for the correct concretization of high-level semantics such as
arithmetic operations. A platform’s ISA does not maintain or check type information,
instead accepting any operands of the right bit-width for any instruction. For example,
the machine instruction for the sum of two operands will always succeed, but that result
may not be semantically meaningful if one operand is laid out as a floating-point value
in mantissa format, and the other as an integer in the two’s complement format. The
concretization of high-level semantics for such low-level operations is encoded in .

2.2 Type Guards

Type guards ensure that all read operations on a value v use the correct binary interpre-
tation of that value. They are nodes in the control flow graph (CFG) with an outgoing
edge for each type t € T'ag, branching on 7(v). Figure 3.1 shows how a specializing use 2
of value v is guarded.

This uses three partial applications of the function 7; one for each of the possible values
of the tag 7(v). The resulting functions « : Spec — U interpret the value and are input
to the specialized versions of 2.

Note that these type guards are evaluated at runtime, preserving the dynamic behaviour
of the Python programming language and Tython’s first mantra:

“A user should be able to write Pythonic code.”
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v ESpec
T(v)?

Integer Object
FP

Qint(1'p(v)) Ofp(11'4(V)) Qopject(T'2(V))

F1GURE 3.1: The guarded specialization of an operation {2 on value v.

2.3 Type Inference

There are several methods of type inference, using such techniques as pricipal typing (such
as Algorithm W described in the Hindley-Milner type system [25]), and the derivation of
coercions as applied by Rastogi et al. [35].

And although Python syntactically supports type annotations, the Python organization
considers them very un-Pythonic [8]. In keeping with Tython’s mantras, we will not
currently consider the use of this syntactical language feature. Without type annotations,
we can only attempt to infer expression types from observing the static properties of values
in source code. We can then use that static information to infer the type of a variable.

Our type system only handles the three discrete types { Integer, Floating Point, Object},
and there is no polymorphic relationship between these types. We can therefore see the
inference of the type of a variable in our context (Definition 3) as similar to Rastogi et
al. [35], looking only at the inflows of values into a (type) variable.

Definition 3 type(a) =t iff Vw € W.r(w) = t, where W C Spec is the set of operands
corresponding to all write operations to the variable .

This definition does preserve the requirement of locality. If all write operations to
a variable a are known at compile-time, and the type associated with all those write
operations are known at compile-time to be some type ¢, then we can statically infer that

type(a) = t.
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3 Namespaces and Scoping

Scopes are sets of variables which describe the definitions a variables in a program. We
say a variable v is defined in a scope s iff v € s.

We define a transitive, asymmetric relation E, where a sEp for any scopes s and p
iff s is nested in p. This gives us a hierarchical structure with which we can define the
semantics of variable visibility (Definition 4).

Definition 4 A variable v is visible in the scope of s (visible(v, s)) iff v € sV(Is'.sEs'Av €
).

The converse intuition also holds;

Definition 5 A wvariable v is not visible in a scope p (—wisible(v,p)) if it is defined in a
child scope s; v € s, SEp.

Namespaces are the set of variables visible from a given scope; N : Scope x Name X
Value. For a given scope s, a namespace is defined by the parameterized set N, :=
v € Variable.visible(v, s). A namespace can be queried with the function finds : (Name x
N;) — Value to resolve the value related to a name from a given scope s.

The concept of variable shadowing is defined as such: if a name v is defined in more
than one scope visible from a given scope s, the nearest definition is selected [44|. The
nearest definition of a name v from s is found by following the transitivity of the nesting
relation E up the hierarchy, and yielding the first scope s, s’ = sV sEs’ where v is defined.
This allows for variable shadowing, as illustrated in Listing 3.2, where the name z is defined
both as an argument to the function foo and as a variable in global scope. Name resolution
correlates the expression x at line 4 to x € sy, because that definition is nearer than the
definition € s,.

3.1 Name Binding and Resolution

We propose to bind names statically, a principle known as early binding. This requires
the function finds to be implemented at compile-time. This is in contrast to CPython’s
late binding strategy. The benefit of early binding is that, when it can be applied, it
brings name resolution to compile time. In late binding, name resolution must happen at
runtime through a namespace search. In CPython, namespaces are implemented as objects
containing a hash table. The table’s key is the hash of the name to resolve. In Tython,
no such search is necessary for variable names or global functions. Variable names are
statically bound in the code generator and subsequently encoded in SSA form, binding
them at the IR level. This effectively results in the aliasing of registers for specialization
structures which the LLVM backend allocates to registers. For values which are pushed
to the stack, the name binds to a pointer to a specialization structure. See Chapter 3
Section 2 for a description of the data model.

Tython informs the user at compile time, before any executable code is emitted, of
illegal name bindings. This fail-fast behaviour is safer than the NameError CPython
throws at runtime. Being a late binding interpreter, CPython is only aware of a name not
existing at any place in a program when it has exhaustively searched all context-relevant
namespaces at runtime.

CPython implements fast hash tables for name resolution in an effort to minimize the
performance impact of these very common operations. However, regardless of how fast
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these algorithms perform, they still introduce a performance overhead for every use of a
variable or function name.

Tython still relies on late binding for object properties (and collection objects which
can be indexed by an hashable key such as a string, even if the string is a literal — more
on this in Chapter 3 Section 5). The effects are similar to those in CPython; name errors
are thrown at runtime, and there is a performance overhead for the use of any late binding
name. For early binding names, however, Tython provides a safer compile-time error and
does not generate the overhead for runtime name resolution.

Listing 3.1 shows an example of a name error. The lexical scope of y is limited to the if-
block it is defined in. Let the scope of the if-block the variable y is defined in be s; ¢, and let
the global scope be s,. Having y € s;y and Definition 5, then s;;Es, = —wisible(v, sg).

x = input () 1 |x = 42
2
if x == "42": 3 |def foo(x):
y =1 4 print (x)
5
#CPython exzecutes all code 6 | foo(24) #prints 24

before the mame error... .
print ("Hello,world!") LisTING 3.2: The shadowing of a

name in a nested scope.
#... failing only when a name
cannot be found in the
relevant mamespaces
print (y)
L1STING 3.1: An illegal use of the
reference y, which is undefined at
global scope.
x = input ()
if x == "42":
x = 24
print(x) #prints 24

LISTING 3.3:
Assignment to a visible name is
never a redefinition in Python.

Note that, under Python language semantics, line 4 in Listing 3.3 does not define a
new name z in the scope s;;. This is because, lacking a keyword for the purpose, name
definition is implicit in Python through the assignment of a value to an fresh name. Certain
other constructs, such as the function name and argument x shown in Listing 3.2 are also
defining constructs [44]. There are certain surprising consequences to the binding semantics
of Python, such as the UnboundLocalError and the existence of the global keyword [9].

4 Type Shifting

Type shifting is the emergence of local static typing in a dynamically typed program.
This is similar to gradual typing, but requires no type information or let-style binding
to be expressed by the programmer. The source code of a Python program can entirely
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dynamically typed, and yet we can still locally obtain some of the benefits of static typing.
Most notably, we can reduce the number of runtime type checks if the type of a variable
is known at compile time.

Early-binding gives the compiler direct access to all write operations W on a variable
a. When all types of these write operations can be statically determined to be the same,
the type of « is trivial by Definition 3. If the type of « is known at compile time, we can
remove the unused branches of the type guards generated for all uses of a.

Figure 3.2 shows the CFG of the application of a specializing operation €2 over a variable
a. Early-binding ensures the runtime branching condition is 7(v) (the type of the value
associated with «) instead of type(a). Figure 3.3 shows the result of type inference on
that operand. 7(v) is statically known and can be replaced with the constant enumerator
Integer. Figure 3.4 shows how comparison of constants as a branching condition allows for
trivial edges to be pruned. Because there is branch for each tag in T'ag, upon resolution
of 7(v) there is always exactly one outgoing branch remaining. Since the CFG nodes
for specializations of €2 had been generated for this unique use of «, they have no other
incoming edges. In Figure 3.5, the unreachable CFG nodes are deleted and the straight-line
nodes are merged.

This turned a dynamically expressed use of a variable « in source code into a static
use in the generated code.

v eSpec l

T(V)?

v ESpec
Integer?

Integer Object
g P )

Integer Object
g P ]

Qine(1r'(v)) Qpp('4(v)) Qopject(TT'2(V))

Qiny('o(V)) Qrp(m'4(v)) Qobject(TM2(V))

l_, !

FIGURE 3.2: The CFG for the FIGURE 3.3: Step 1: type in-
specializing application of 2 over ference.
a value v.
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5 Limitations
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v ESpec
Qint(r'0(V))

:

FIGURE 3.5: Step 3: delete
unreachable nodes and merge
straight-line nodes.

There are some limitations associated with the design of Tython. Regarding name binding
and resolution, there are many language constructs which do not yet benefit from static
binding. Notably, the access of built-in object functions (for instance, the method call 1ist
.append(e)) is late binding. This means that the name of the object function is resolved at
runtime through a linear search over an array of key-value pairs maintained by the object’s
type object. This is less efficient than CPython’s name resolution through fast hash tables.

Another limitation of the design is the extensibility of the set T'ag. As new types are
added to the set, an increasing number of CFG nodes is generated. Any implementation
that extends T'ag should take care that the overhead introduced by an increased number
of generated CFG nodes for all read uses of a value is not counterproductive towards the
goal of performance improvements.



Chapter 4

Implementation

In this chapter, we introduce Tython [27]. Tython is a Python compiler, implementing the
design described in chapter 3. It supports a minimum set of key language features, chosen
for their relevance to running a selection of benchmarks (see Chapter 4 Section 1.1). A part
of the implementation is inspired by CPython, but distinguishes itself by being an ahead-
of-time compiler instead of an interpreter. Fundamentally, it leverages a similar object
data model to CPython. However, Tython aggressively applies specialization strategies
to integer and floating-point operations, and applies LLVM’s general optimizations to
statically reduce the dynamic type checks into specialized straight-line code at compile-
time.

The compiler is implemented in C++-, using the ANTLR parser-generator for lexing
and parsing, and the LLVM Core API for code generation and optimization. It uses Clang
as an intelligent linker (with link-time optimizations), and can create executables for most
LLVM target platforms’.

1 The Runtime

In this section we will describe how Tython’s data and execution models are implemented.
We describe the internal representations of runtime values, how expressions are evaluated,
and how control flow is handled.

Tython’s runtime comprises a dominant internal execution model and a supporting
object execution model. We say the internal execution model is dominant because it is
in charge of program control flow, and Tython’s performance-oriented design prefers all
program data and expressions to be represented and executed in this part of the runtime.
Control is only yielded to a routine in the object execution model when necessary. The
internal execution model regains control when the object routine exits?. Between the exe-
cution models, there is bridging machinery with the responsibility of marshalling operands
to and from the specialization and object data representations.

1.1 The Internal Execution Model

The internal execution model handles the structure and the control flow of the source
program. Tython implements this using the LLVM intermediate representation (IR). Dur-
ing compilation, this is an SSA-form representation of the source program with its own

The most efficient target platforms are 64-bit architectures, due to the assumption of 64-bit address
width in the specialization data structure.
2There is no concurrency relation between the execution models.
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low-level type system. The internal execution model is responsible for (initiating) the
instantiation of all source-level data, such as Python literals.

It has a data model which allows for the specialization of uses of values with the scalar
types Prim defined in Chapter 4 Section 1. For the use all other types, namely the Object
types, it delegates control to the object execution model.

The Internal Data Model

The data model Spec enabling the specialization of scalar types is implemented in Tython
as a tagged union. The memory layout of values is shown in Table 4.1.

. Size Offset
Field Type (bytes) (bytes)
tag integer 4 0x0
content union 8 Ox4

TABLE 4.1: The data layout of the specialization tagged union.

The data structure has a representation in the runtime library, where it is implemented
as a struct with the name specialization_t. The definition of the C struct in Listing 4.1
serves as a convenient notation to discuss the union type of the content field. Lines 4-6
show the definition of three 8-byte wide types®.

typedef struct specialization {
uint32_t tag;
union {
long long integer;
double floating_point;
struct object_t* object;
+;

} specialization_t;

LiSTING 4.1: The definition of specialization t in the runtime library.

All values in Tython are of this form. Specialization values are contained directly as
a field in the data structure, and object values are contained as a pointer to the heap
memory location where the object is located.

1.2 Type Guards

To create a type guard, Tython generates runtime code to first extract the tag field of a
given value v with the IR instruction extractvalue %Spec %v, 0, implementing the function
7. Then a branching instruction on 7(v) is generated with four targets: a specialized
handler block for the Integer and FloatingPoint types, a dynamic handler for the Object
type (delegating to the object execution model), and an exception handler for encountering
an unexpected tag value t ¢ Tag. 77 shows a Control Flow Graph (CFG) of the generated
branching.

Recall Figure 3.1, where a specializing operation €2 on a value v is guarded. The
partial applications of 7 are implemented using a bitcast instruction on u(v) for 71, and
an inttoptr instruction on p(v) for mg. p, similarly to 7 is implemented with the IR
instruction extractvalue %Spec %v, 1. Given the implementation of the content field as

3 Assuming a 64-bit platform on which sizeof (void*)==
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an i64 in the data layout of specialization values in LLVM IR, x{) is equivalent to yu: there
is no bitcast required to interpret an i64 as an i64.

Thanks to LLVM IR’s low-level type system, the implementation of concretization ends
at the IR level for Tython. Tython applies 7 to generate IR-typed instructions which the
LLVM backend will further concretize for a specified target platform.

1.3 Type Coercion

The Python language specification describes the semantics of type coercion under certain
operations [44]|. For infix binary operations, it specifies that the type of the left-hand
operand (LHS) is leading, and that the right-hand operand (RHS) must be coerced to the
type of LHS.

Infix binary operations in the object execution model are syntactic sugar for the in-
vocation of magic methods. Type coercion is handled in these magic methods at runtime
and, having resolved the type of LHS, follows the resolution of the type of RHS. The magic
method belongin to the type object of LHS is responsible for the conversion of RHS, or
throwing a type error.

Tython implements this with a nesting of type guards. For each specialized handler of
a value v, an inline type-guarded conversion of RHS is generated.

1.4 The Semantics of Specialized Types

Both specialized types are a more efficient counterpart to their object implementation in the
runtime library’s data model. They are implemented as finite-length bit-strings, tailored
to a target register size, which allows for the application of single machine instructions as
a concretization of most of the source-level infix binary expressions®. This single machine
instruction is by definition faster than the object implementation; the object implemen-
tation results, eventually, in at least one equivalent machine instruction. In practise, the
dereferencing of several indirections and type checks on objects is an order of magnitude
slower than a single (arithmetic) instruction.

Integer objects in Python should allow for arbitrary length. However, Tython will
aggressively specialize on this type if it has the chance, diverging from the language speci-
fication. The Python language specification specifies that floats are implemented in double
precision. Tython’s FloatingPoint specialization type matches this exactly.

Recall one of Tython’s mantras:

“Semantics are second to performance.”

2 Memory Management

Tython has some infrastructure for garbage collection of objects through reference counting,
but it is currently not fully implemented. This means that most objects allocated at
runtime are not cleaned up before the program exists. This leaky behaviour is far from
desirable, but a necessary consequence of project time constraints.

All Tython objects live on the heap. This is similar to CPython’s implementation
of memory allocation. CPython also employs reference counting as a mechanism for de-
terministic garbage collection. One of the general shortcomings of reference counting is
cyclical references. CPython solves this with a cycle breaking algorithm. Tython does not

4The most notable exception being the exponentiation operator **. Exponentiation does not have a
corresponding LLVM IR instruction.
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have a mechanism to resolve the issue of cyclical references. This, again, due to project
time contstraints.

The lacking of features in memory management are justified by the focus of the project
on specialization and type shifting, constrained by the project timeline. Heap memory
allocation can have a large impact on performance, and so a compiler generating leaky code
is not optimal. However, in chapter 5 we are most interested in the relative performance
of unoptimized (leaky) executables versus optimized (leaky) executables, to measure the
impact of specialization and type shifting on runtime type guards.

2.1 Scopes and Memory

The visibility of variables leads to an interesting interplay between scoping and memory
management: a variable v defined in scope s semantically cannot have any uses in any
parent p of s. If no uses are possible outside of s, we may yield all memory maintained
uniquely for values associated with the variables in s. The memory associated with values
which are referenced elsewhere may not be yielded.

In the case of reference counting as employed by Tython, this simply means that the
reference counters of all heap objects are decremented by one at the end of their lexical
scope. Local objects are never created, but stack allocations of values does occur. However,
these never outlive their stackframe (see Chapter 4 Section 2).

2.2 Local Values

Another feature of Tython is the specialization of certain data types (see Chapter 4 Sec-
tion 2). This allows for integer and floating point values to exist on the stack or in registers.
Memory management of register values in an ahead-of-time compiler takes the form of reg-
ister allocation at runtime. This is performed over LLVM IR in SSA form by the LLVM
backend. In this setting, the problem of register allocation is akin to the graph coloring
problem over the interference graph as described in Chapter 4 Section 3. For stack values,
memory allocation is not mirrored by a later deallocation in the same way that heap allo-
cation is. Stack values live in a stack frame. This stack frame is supplied by the operating
system at runtime. It is allocated upon entering a function call, and released after the call
returns. This means that all "garbage" memory on the stack is reclaimed by the operating
system automatically.

Tython’s frontend does not allocate values on the stack explicitly. An LLVM backend
may choose to lift a register value into stack memory when the register pressure is too high
and not all interfering values can fit into the target’s finite registers.

3 An Example

We will contrast the object execution model with the specialized execution model through
the example of the addition of two objects. In Python, this can be expressed compactly in
infix notation: 1hs + rhs. This single Pythonic expression, however, gets expanded into
an algorithm with non-trivial control flow, as shown in Listing 4.2 and with the concrete
continuation of the example for integer objects in Listing 4.3.

1. Load LHS type object

2. Check if the type supports number operations
2.1. True: Load LHS number operations
2.2. False: Throw TypeError

3. Check if the number operations support addition
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3.1. True: Load the addition function pointer from LHS number
operations
3.2: False: Throw TypeError
4. Invoke the binary addition function

LISTING 4.2: The algorithm for applying addition in the object execution model.

Listing 4.3 shows the object’s binary addition function. It is responsible for (some
redundant) type checks, and the conversion of the RHS operand. Lastly, it sums the
values of the LHS and RHS objects and returns the result as a new object of the same
type as LHS.

1. Check LHS type is IntegerObject
2. Cast LHS to IntegerObject
3. Check RHS type
3.1. IntegerObject: Cast RHS to IntegerObject
3.2. Object: Resolve RHS type
3.2.1. Check RHS type supports number operations
3.2.1.1. True: Resolve RHS number operations
.2.1.2. False: Throw TypeError
Check RHS type supports IntegerObject conversion
.2.2.1. True: Resolve the conversion function from RHS
number operations
3.2.2.2. False: Throw TypeError
3.2.3. Invoke the type’s unary IntegerObject conversion
function on RHS
Load the value field of the LHS and RHS IntegerObjects
Sum the loaded value fields
Allocate a new IntegerObject instance
Set the value of the new IntegerObject instance to the
calculated sum
8. Return the new IntegerObject instance

w
N
w N w

~N O O

LISTING 4.3: The addition of an object RHS to an integer object LHS in the object
execution model.

The simple example of addition illustrates the degree of indirection involved with the
object execution model, and the frequent allocation of new objects. Step 3.2.3. in List-
ing 4.3 potentially hides more conditional object allocation. In contrast, the case of addition
in Tython’s specialization execution model (shown in Listing 4.4), is more compact and
more local, and does not require a dynamic function dispatch for the operation or object
allocation for its result.

1. 7(LHS)
1.1. Integer: 7(RHS)
1.1.1. Integer: add i64 ny(LHS) wyj(RHS)
1.1.2. Floating-Point: Convert RHS to Integer
.1.2.1. %0 = fptosi float =j(RHS) to i64
.1.2.2. add i64 m((LHS) %0
Object: convert object to Integer
.1.3.1. %0 = call object_to_primitive on RHS

1
1
1.1.3
1
1.1.3.2. add i64 =)(LHS) =w{(%0)
a
1
1
1

1.2. Floating-Point: 7(RHS)
1.2.1. Integer: Convert RHS to Floating-Point
.2.2.1. %0 = sitofp i64 w((RHS) to float
.2.2.2. add float = (LHS) %0
1.2.2. Floating-Point: add float w(LHS) w(RHS)
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1.2.3. Object: convert object to Floating-Point
1.2.3.1. %0 = call object_to_primitive on RHS
1.2.3.2. add float w(LHS) w1 (%0)

1.3. Object: 7(RHS)

1.3.1. Integer: convert LHS object to Integer
1.3.1.1. %0 = call object_to_primitive on LHS
1.3.1.2. add i64 w((%0) 7,(RHS)

1.3.2. Floating-Point: convert LHS object to Floating-Point
1.3.2.1. %0 = call object_to_primitive on LHS
1.3.2.2. add float m(%0) m(RHS)

1.3.3. Object: delegate to object execution model
1.3.3.1. See Listing 4.2

LISTING 4.4: The addition of scalar types in Tython’s specialization execution
model.

Note that in Listing 4.4, the ' functions hide bitcasts. These bitcasts are no-ops
inserted only for the benefit of the LLVM IR-level type system and do not result in code
being emitted into the executable (and so they have no effect at runtime). Note that the
semantics of type coercion in Tython are subtly different from Python. For LHS values
of specialized types Integer or FloatingPoint, the semantics align with Python: the type
of LHS is leading. If both LHS and RHS are Object types, the semantics also align with
Python through delegation to the object execution model. However, if the LHS is an
Object type, and RHS is a specialized type, Tython is able to avoid redundant object
type checks and the allocation of new objects by letting the RHS type be leading in type
coercion. If the LHS type would be leading, object type resolution of LHS would have
to be applied, and the specialized value RHS would have to be bozed into either a newly
allocated IntegerObject or FloatObject.

The control flow of Listing 4.4 is also not trivial. However, the conditional branching
instructions on the comparison of a register value® with a constant are much faster than
the equivalent type resolution and checking in the object execution model.

In the worst case, LHS and RHS are both unspecialized objects, and the conditional
branching results in a delegation of the addition operation to the object execution model.
However, in a program where values can be specialized, the relatively small overhead
incurred from this conditional branching can be offset by the large performance gain when
specialization is applied. See chapter 5 for the performance measurements of Tython’s
specialization strategy.

Additionally, this data layout and control structure for type guards allows for opti-
mizations which can, in the best case, remove the type guard and reduce the addition
of two values of the type Integer to the single instruction add i64 w((LHS) w((RHS)

= add i64 p(LHS) u(RHS) because 7(LHS) = 7(RHS) = 0. For two values of the
type FloatingPoint, the best case is the single instruction add float =} (LHS) w(RHS).
Chapter 4 Section 4 discusses the general case and this concrete this example further.

4 Type Shifting

Tython implements several optimization strategies to improve the performance of Pythonic
source code. Chapter 4 Section 2 describes how Tython employs an internal data and ex-

5Even if the value is pushed to the stack because of high register pressure, a single load from the stack
is faster than multiple loads on the heap (which often results in page faults, as objects can be stored "far"
from their associated type object).
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ecution model that can implement specialized operations on Integer and FloatingPoint
values using highly efficient low-level instructions, circumventing the slower object execu-
tion model. This is implemented as a tagged union, where the tag is any of the enumerator
set Tag = {Integer, FloatingPoint, Object}. The dynamic typing of Python is preserved
through the generation of runtime type guards and casts. These type guards introduce a
runtime overhead of a conditional branches on all specialized high-level operations. How-
ever, the operands of these conditional branches are implemented as a comparison between
a register value and a constant, making the overhead small compared to the type checking
performed by the object execution model.

As discussed in Chapter 4 Section 3.1, for some symbols Tython can apply static name
binding. This allows for direct compile-time access to the definition of a name, without the
need for runtime name resolution. CPython uses late binding, requiring a runtime hash
table look-up for every use of a name. For those symbols where Tython can bind statically,
this leads to earlier (compile-time) error reporting of undefined symbols than CPython,
without the runtime performance overhead incurred by late binding.

The LLVM infrastructure provides a scala of program optimizations [31]. These are
transformations which operate at the IR level, and are front-end agnostic.

Some transformations stand out for optimizing Tython’s type system. This is because of
the combination of Tython’s specialization data layout and branching type guard structure.
We will show how general LLVM optimizations can be applied in type inference, and can
then use that infered type information to reduce the number of type guards in a program.

In this section, we will discuss the effects of type shifting on a Python program compiled
with Tython.

4.1 Type Inference

One inefficiency of late binding dynamic languages is that the type of the value associated
with any variable must be checked at runtime for each use. For objects, this type checking
involves pointer dereferencing and several steps of indirection. All objects live on the
heap, which is a "free-for-all" memory region where write access is granted from across
compilation units, and effectively from throughout the entire program. This makes it is
hard, if all information is statically available, or impossible, if not all information is visible
to the compiler, to determine the state of an object on the heap at compile-time®.

If we are dealing with a local value, we can allocate that value locally on the stack. Their
lifetime then becomes restricted by the parent function: stack members do not outlive their
stack frame. Similarly, storing a local value in registers has no general meaning outside of
a function at the LLVM IR level”. These relatively short and locally visible lifetimes allow
LLVM to identify all read /write operations on local values. This completeness of visibility
of local values is one of the benefits of ahead-of-time compilation over interpretation. Full
read /write visibility is fundamental to LLVM’s ability to prove that a field of a local value
is constant.

There are certain expressions for which type inference is trivial. Literals are constant
atomic expressions which do not depend on any other data, and whose value is defined
locally. For specialized expressions over values with known types, the type of the expression
is also trivial. These literals and specialized expressions form the roots from which type
inference can propagate.

5The same applies to global values, regardless of their data model. Global values live on the heap,
which is why LLVM cannot "see" all their uses.
"At the LLVM IR level, we are dealing with SSA names, which are not aliased to a register yet.
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The LLVM transformation which takes care of the propagation of static type informa-
tion is the Scalar Replacement of Aggregates (SROA). SROA breaks up stack allocations
of aggregate members into separate allocation instructions. This is a clearer SSA form,
which immediately allows LLVM to identify write access to the type field of a local value.
If all write access sets the same scalar constant (a value’s type is implemented as an in-
teger enumerator), then LLVM removes unnecessary writes to the field and replaces all
subsequent reads of the field by the identified constant.

Recall that type guards are implemented as conditional branches on the comparison
between the type field of the guardee and a constant type enumerator (one for each element
in the set T'ag). This replacement of type tags by constants transforms the type guard into
conditional branches where the condition is a result of the comparison of two constants.

4.2 Type guards

The constant propogation of the type tag of a value makes type guard conditions trivial.
LLVM can replace the comparison of two constant by a constant which is the result of the
comparison. It can then remove all conditional branching instructions whose conditions
are trivially false. Conditional branches where the condition is trivially true are replaced
by an unconditional branch. The Sparse Conditional Constant Propagation (SCCP) trans-
formation handles all of this.

Lastly, after the successful removal of conditional branches in a type guard, the control
flow graph (CFQG) of the program is left untidy. The specialized handlers for all types other
than the infered static type of the guardee have become unreachable nodes. These nodes
can safely be removed, as they will never execute. The transformation that handles this is
called Simplify the CFG (simplifycfg). It also merges CFG nodes which have one parent
in the graph, and are reached through an unconditional branch.

4.3 An Example

We apply three transformations:
1. Scalar Replacement of Aggregates (SROA)
2. Sparse Conditional Constant Propagation (SCCP)
3. Simplify the CFG (simplifycfg)

Listing 4.5, Listing 4.6, and Listing 4.7 show these optimizations applied to the type
guard algorithm showing the concrete example of addition described in Listing 4.4. Note
that the unreachable CFG nodes after step 2 (shown in Figure 3.4) are not represented in
the algorithm in Listing 4.6, because these steps are never considered.

This example shows how the general LLVM optimizations can concretely implement
the type shifting described in Chapter 4 Section 4.
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1. Integer
1.1. Inte
1.1.1
1.1.2

1.2. Flo
1.2.

=
NN

1
1.3. Obje
1.3.1

1

H WN R, R P R W
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ger: Integer

. Integer: add i64 w((LHS) w((RHS)

. Floating-Point: Convert RHS to Integer
.1.2.1. %0 = fptosi float 7j(RHS) to i64
.1.2.2. add i64 w\(LHS) %0

Object: convert object to Integer

.1.3.1. %0 = call object_to_primitive on RHS
.1.3.2. add i64 w,(LHS) w{(%0)

ting -Point: Integer

Integer: Convert RHS to Floating-Point
.2.2.1. %0 = sitofp i64 w((RHS) to float
.2.2.2. add float w(LHS) %0

Floating-Point: add float w{(LHS) 7 (RHS)
Object: convert object to Floating-Point
.2.3.1. %0 = call object_to_primitive on RHS
.2.3.2. add float m|(LHS) w1 (%0)

ct: Integer

. Integer: convert LHS object to Integer
.3.1.1. %0 = call object_to_primitive on LHS
.3.1.2. add i64 =nj(%0) wH(RHS)
Floating-Point: convert LHS object to Floating-Point
.3.2.1. %0 = call object_to_primitive on LHS
.3.2.2. add float 7 (%0) w1 (RHS)

Object: delegate to object execution model
.3.3.1. See Listing 4.2

L1STING 4.5: The inference of 7(LHS) and 7(RHS).
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True:
1.1.1.

True:

False:
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False:

False:

False:
False:

add i64 w((LHS) w((RHS)
Convert RHS to Integer
%0 = fptosi float wj(RHS) to i64
add i64 w((LHS) %0
convert object to Integer
%0 = call object_to_primitive on RHS
add i64 w,(LHS) m(%0)

Convert RHS to Floating-Point
%0 = sitofp i64 w(RHS) to float
add float =i (LHS) %0
add float wj(LHS) m(RHS)
convert object to Floating-Point
%0 = call object_to_primitive on RHS
add float wj(LHS) =1 (%0)

convert LHS object to Integer
%0 = call object_to_primitive on LHS
add i64 w((%0) wy(RHS)

convert LHS object to Floating-Point
%0 = call object_to_primitive on LHS
add float w((%0) =} (RHS)

delegate to object execution model
See Listing 4.2

LISTING 4.6: The pruning of CFG edges and the resulting unreachability of nodes.

add i64 w((LHS) ny(RHS)

LISTING 4.7: The merging of straight-line blocks and the deletion of unreachable

blocks.




Chapter 5

Evaluation

In this chapter, we first describe the methodology of measuring the performance of Tython,
CPython and Codon on a standard set of benchmarks. In Chapter 5 Section 2 we show
an overview of the results of these measurements. In Chapter 5 Section 3 we describe each
benchmark in more detail and look at profiler data. Lastly, in section Chapter 5 Section 4
we discuss how the measurement results of Tython, CPython and Codon align with our
expectations.

1 Methodology

In this section we evaluate the performance benefits of type shifting and specialization.

We run benchmarks to measure the executables generated by Tython to quantitatively
argue that the specialization and type shifting of values in the execution model have a
positive performance impact. We also measure the execution of the same source code in
CPython.

The programs we run comprise a benchmark suite, selected to put the various features
of the language implementation under stress. We run the benchmarks under a changing set
of build configurations, with the aim of identifying their relative performance impact. The
primary metric of interest is execution time. Each benchmark is run 10 times to obtain
the fastest, slowest, mean, and median exection times, as well as their variance.

All benchmarks are compiled against a CPU profiler, allowing for a procedure-level
breakdown of their execution. When discussing the number of samples found in a function,
we refer to the samples found in that function and its delegates. The percentage of samples
found is a percentage of the total number of samples taken during the execution of the
benchmark. This encapsulation means that the percentages we discuss in running text
should not be expected to add up 100%.

1.1 Benchmarks

Because Tython is a minimal language implementation, we choose benchmarks that use
only those features that the compiler currently supports. Benchmarks are selected to only
make use of built-in Python data types. Since Tython is purpose-built, it does not currently
support user-defined classes. Tython implements specializations for scalar data types,
which we are interested in measuring. We are also interested in measuring function calls,
as Tython applies early binding. Lastly, the list and tuple data types are fundamentally
Pythonic, as well as for-loops [29].

35
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Benchmark Scalar values Function calls Container types For-loops
Fibonacci X

Fibonacci (recursive) x b'e

NBODY X X X X
NQUEENS X X b X

PI X X X
QuickSort X X b b

Sieve X X X

TABLE 5.1: The selection of benchmarks, and their contribution to the measure-
ment goals.

Table 5.1 shows the selected benchmarks, and how each contributes to the measurement
goals.

1.2 Environment

All benchmark results were obtained on the same hardware. The operating system is
Ubuntu 23.10'. The CPU is AMD Ryzen 7 5800U. The system has two identical RAM
modules, installed in two banks: Samsung M471A1G44AB0-CWE 8GiB SODIMM DDR4
at 3200 MHz, for a total of 16GiB of DDR4 RAM.

The kernel parameter "rtprio" is set to "99" for the logged-in user, allowing us to
run the benchmarks with real-time priority using chrt -f 99. The command chrt -f 99

perf stat -e user_time,instructions,system_time -x ’’<executable> uses perf stat
to perform measurements on the execution times of the benchmarks.

We use the CPU profiler included with the gperftools performance analysis toolset [14],
version 2.0. All benchmarks are dynamically linked against the profiler with the Clang
argument -lprofiler. It samples at a rate of 10000 samples per second.

We are evaluating Tython v0.1 [28]|. The reference implementation, CPython, is version
3.11.6. The Codon implementation is version 0.16.3.

1.3 Build configurations

We run the benchmarks on Tython with four different build configurations. Table 5.3
shows the exact compiler flags used for each build configuration. All configurations are
prepended with tython -m <source_path> -1 <runtime_library_path> -o <output_path>,
forming the complete compilation command.

The results can be reproduced by running the script run.sh, included in the Tython Git
repository [27]. The results listed in this section are obtained by running the script from
the benchmarks/ directory with Tython v0.1 [28]: ./run_.sh src 10 --tython --cpython
--codon.

!The exact uname -a output: Linux IdeaPad-5-Pro-14ACNG6 6.5.0-41-generic #41-Ubuntu SMP PRE-
EMPT DYNAMIC Mon May 20 15:55:15 UTC 2024 x86 64 x86_ 64 x86 64 GNU/Linux
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Configurationl

First, we compile the benchmarks without generating specialized values. This means that
all values are objects: Vv € Spec.7(v) = Object. Type guards are generated for all uses of
all values, but no type guard reduction is applied.

Configuration2

Next, we run the benchmarks with a similar build configuration, the only difference being
that type guards are not generated. All runtime type checks and operations happen through
the object execution model. Having all values as objects allows us to deduce the overhead
incurred by the additional type checks Tython performs on the use of values. The runtime
directly delegates type checks and operations on all values to the object execution model.
Out of the four configurations, the build artefacts generated by Configuration 2 are most
similar in execution model to CPython.

Configuration3

The next build configuration enables specialized values. Recall that the specialized types
are Integer and FloatingPoint. This optimization particularly affects arithmetic-intensive
benchmarks. Other data types, such as container types, are non-specialized and evaluated
through the object execution model. Elements contained in a container type can only be
of type Object.

Configuration4

Lastly, we build the benchmarks with type-shifting optimizations applied. Type shifting
is emergent from the application of general program optimizations. These optimizations
may affect more aspects of the program than just the propagation of type information and
the reduction of type guards.

2 Measurements

In this section we give an overview of the measurement results. Figure 5.1 plots the mean
execution times of the performance of the benchmarks under different build configurations.
Note that the bars for Fibonacci! (recursive implementation) and Fibonacci? (forward im-
plementation) are present, but the execution times of Configuration 3 and Configuration 4
are significantly smaller than those of Configuration 1 and Configuration 2, making the bars
appear very small. Configuration 1 and Configuration 2 failed to run the PI benchmark
due to high memory consumption. We will discuss this further in Chapter 5 Section 3.
Table 5.2 shows the relative speed-up between Configurations 1 and 2, between Configu-
ration 2 and 3, and between Configuration 1 and 4. Recall that the difference between
Configurations 1 and 2 is only that Configuration 1 generates type guards whereas Con-
figuration 2 does not. Both only use the object execution model. The difference between
Configurations 3 and 4 is only that Configuration 4 applies the general optimizations that
enable type shifting. Both make use of the specialization execution model. The differences
between Configurations 1 and 4 are that Configuration 1 always generates type guards —
even though it always uses the object execution model — and Configuration 4 leverages the
specialization execution model and reduces the number of generated type guards.

Table 5.4 through Table 5.7 show the execution time of benchmark executables pro-
duced by Tython under the four different build configurations.
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FIGURE 5.1: The mean execution times for each benchmark under the four different

build configurations.

Configuration 1 /  Configuration 3 / Configuration 1/

Configuration 2

Configuration 4

Configuration 3

Fibonacci (recursive) 9.3% 31.9% 98.5%
Fibonacci 8.3% 12.5% 98.1%
NBODY 10.9% -0.2% 20.7%
NQUEENS 10.9% 0.1% 34.7%
PI N/A 4.8% N/A
QuickSort 16.3% 14.1% 6.0%
Sieve 9.7% 5.8% -165.4%

TABLE 5.2: The relative speed-up of mean execution time between build configu-

rations.
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Label Configuration
Configurationl -d —no-specialize
Configuration2 -d —no-specialize —no-guards
Configurationd -d

Configuration4

TABLE 5.3: The benchmark build configurations.

Fastest Time Mean Time Median Time Max Time Variance (s?)

fibonacci (recursive) 4.5059 4.5620 4.5435 4.7805 0.0057
fibonacci (while) 0.5995 0.6709 0.6806 0.7702  0.0030
nbody 3.1348 3.1817 3.1861 3.2249  0.0005
nqueens 2.8806 2.9376 2.9194 3.1624  0.0058
pi error error error error error

quicksort 2.1752 2.1993 2.1980 2.2434  0.0004
sieve 2.8970 3.0524 3.0601 3.1669  0.0084

TABLE 5.4: The benchmark results for Configurationl (times in seconds).

3 Benchmarks

In this section we describe each benchmark in more detail and inspect profiler measure-
ments to decompose the program execution and reason about the performance implications

of its components.

3.1 Fibonnacci

The Fibonacci sequence is a sequence where each number is the sum of the two numbers
preceding it. Listing 5.1 shows a straightforward implementation of summing the first 20
Fibonacci numbers. It works by starting with the sequence 0 and 1, and then iteratively

Fastest Time Mean Time Median Time Max Time Variance (s?)

fibonacci (recursive) 4.4355 4.4709 4.4629 4.5194 0.0007
fibonacci (while) 0.6060 0.6123 0.6125 0.6186 0.0000
nbody 2.9824 3.0279 3.0283 3.0622 0.0008
nqueens 2.8078 2.8464 2.8474 2.8869 0.0005
pi error error error error error

quicksort 2.0405 2.0853 2.0890 2.1099 0.0006
sieve 2.6616 2.7709 2.7861 2.8379 0.0030

TABLE 5.5: The benchmark results for Configuration2 (times in seconds).
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Fastest Time Mean Time Median Time Max Time Variance (s?)

fibonacci (recursive) 0.0741 0.0750 0.0750 0.0757 0.0000
fibonacci (while) 0.0119 0.0128 0.0128 0.0135 0.0000
nbody 2.5531 2.5927 2.6037 2.6189 0.0006
nqueens 2.0471 2.1044 2.0818 2.1816 0.0027
pi 3.6000 3.7017 3.6761 3.8081 0.0050
quicksort 2.1067 2.1611 2.1360 2.2735 0.0025
sieve 8.0167 8.5803 8.2839 9.3875 0.2698

TABLE 5.6: The benchmark results for Configuration3 (times in seconds).

Fastest Time Mean Time Median Time Max Time Variance (s?)

fibonacci (recursive) 0.0497 0.0515 0.0516 0.0525 0.0000
fibonacci (while) 0.0102 0.0110 0.0108 0.0124 0.0000
nbody 2.6325 2.6992 2.7056 2.7355 0.0010
nqueens 2.0867 2.1084 2.1117 2.1268 0.0002
pi 3.4680 3.5113 3.5014 3.5637 0.0011
quicksort 2.0057 2.0516 2.0705 2.0873 0.0009
sieve 7.5190 7.6125 7.6391 7.7054 0.0039

TABLE 5.7: The benchmark results for Configuration4 (times in seconds).

accumulating the sum of the preceding two fibonacci numbers in a while-loop. To obtain a
longer execution time, the whole algorithm is wrapped in an outer loop of 174 000 iterations.

Features Under Stress

This benchmark mostly stresses integer arithmetics. There are no higher-order types (such
as lists, range objects, tuples, etc.) involved with the algorithm.

Profiler Data

For build configuraion 1, the profiler shows that arithmetics in the object execution model
involve the creation of many integer objects on the heap. Approximately 85% of samples
are found in the function int_create. Integer objects are created to represent source-level
literals, as the result of the comparison between integer objects, and to represent the result
of arithmetic operations between integer objects. For build configuration 4, the profiler
does not manage to interrupt the CPU sufficiently fast to produce more than one sample
in the program entry point. Since all values in this benchmark are of the type Integer,
and the only operations on those values are boolean comparisons, addition and assignment,
Tython manages to execute the entire program without delegation to the object execution
model. Figure A.1 shows a graphical representation of the complete profiler output for
build configuration 1.
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def bench(n):

sum = 0
a =20
b =1
i=20
while i < 174000:
i +=1
a=
b =1
j =20
while j < n:
a = b
b =a+ b
j =1
sum += a
bench (20)

LIsTING 5.1: The iterative Fibonacci benchmark.

3.2 Fibonacci Recursive

Listing 5.2 shows an implementation of the calculating the sum of the same Fibonacci
sequence as described above in Chapter 5 Section 3.1. The difference is that this imple-
mentation uses the naive recursive approach. It starts at calculating the 20" as being the
sum of the 19" and the 18" number. It then recursively determines the 19" number to
be the sum of the 18" and the 17**. Notice how in the second step, the 18" number is
already calculated twice. Other recursive algorithms cache previously calculated values,
improving performance. This naive approach is computationally more expensive, making
for a more interesting benchmark.

Features Under Stress

The heavy recursion in this benchmark explicitly stresses function calls, in addition to
stressing integer arithmetics like the forward implementation of the Fibonacci sequence.

Profiler Data

The profiler data for the benchmark executable generated under configuration 1 shows
that for this recursive implementation, similarly to the forward implementation, about
85% of samples are found in the function int_create. It also shows that the function
fib recursively calls itself many times, as is expected. The executable generated under
build configuration 4 also does not produce interesting profiler output. Tython is able
to specialize all values and operations, resulting in no delegation to the object execution
model. All samples are found in the fib function, calling itself recursively. Figure A.2
shows a graphical representation of the complete profiler output for build configuration 1.
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def fib(n):

if n ==
return O

else if n == 1:
return 1
else if n ==

return 1

else:
return fib(n - 1) + fib(n - 2)

def bench(n):
sum = 0

for i in range (0, 1000, 1):
sum += fib(n)

print (sum)

bench (20)

LIsTING 5.2: The naive recursive Fibonacci benchmark.

3.3 NBODY

The NBODY benchmark models the orbits and interaction of the Jovian planets in the
solar system. It creates a pairing of all bodies, and iteratively compares all pairs to advance
the motion of all bodies by a discrete timestep. An energy scalar is calculated before and
after each discrete timestep.

Features under stress

The NBODY benchmark stresses floating-point arithmetics, and list and tuple access.
The modelling of the motion of the helical bodies involves the solving of physics formulae
involving real numbers. The scalar representation of the "energy" of a body is also a
function in the real domain. The position of the N bodies are stored in a nested data
structure of lists and tuples. The benchmark also involves many function calls.

Profiler Data

For configuration 1, the profiler shows that floating-point arithmetics make up about 34%
of samples. The results of arithmetic operations involves the creation of new floating-point
objects with the function float_create, which is good for about 27% of samples. List and
tuple access by an integer key is nested in for-loops. This creates many integer objects on
the heap, resulting in about 52% of samples found in the function int_create. List and
tuple access amount to about 5% of samples. Configuration 4 can specialize on the integer
and floating-point literals found in the source code. The arithmetic operations make up
about 12% of samples under this build configuration. However, since container objects are
handled exclusively in the object execution model, all specialized values must be boxed
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before they can be used as indices or set as an element in a container object. Boxing
of both integers and floating-point specialized values accounts for approximately 20% of
samples. In total, integer creation is good for 59% of samples, and the creation of floating-
point objects for 19%. List and tuple access amount to approximately 26.2% of samples.
A graphical representation of the complete profiler output for build configurations 1 and
4 is shown in Figure A.3 and Figure A 4.

# Adapted from https://github.com/python/pyperformance/blob/main/
pyperformance/data-files/benchmarks/bm_nbody/run_benchmark.py

DEFAULT_ITERATIONS = 1000
DEFAULT_REFERENCE = "sun"
DEFAULT_LOOPS = 100

PI = 3.14159265358979323
SOLAR_MASS = 4.0 * PI * PI
DAYS_PER_YEAR = 365.24

BODIES = {
"sun": ([0.0, 0.0, 0.0], [0.0, 0.0, 0.0], SOLAR_MASS),

"jupiter": ([4.84143144246472090e+00,
-1.16032004402742839e+00,
-1.03622044471123109e-01],

[1.66007664274403694e-03 * DAYS_PER_YEAR,
7.69901118419740425e-03 * DAYS_PER_YEAR,
-6.90460016972063023e-05 * DAYS_PER_YEAR],

9.54791938424326609e-04 * SOLAR_MASS),

"saturn": ([8.34336671824457987e+00,
4.12479856412430479e+00,
-4.03523417114321381e-01],
[-2.76742510726862411e-03 * DAYS_PER_YEAR,
4.99852801234917238e-03 * DAYS_PER_YEAR,
2.30417297573763929e-05 * DAYS_PER_YEAR],

2.85885980666130812e-04 * SOLAR_MASS),

"uranus": ([1.28943695621391310e+01,
-1.51111514016986312e+01,
-2.23307578892655734e-01],

[2.96460137564761618e-03 * DAYS_PER_YEAR,
2.37847173959480950e-03 * DAYS_PER_YEAR,
-2.96589568540237556e-05 * DAYS_PER_YEAR],

4.36624404335156298e-05 * SOLAR_MASS),

"neptune": ([1.53796971148509165e+01,
-2.59193146099879641e+01,
1.79258772950371181e-0117,

[2.68067772490389322e-03 * DAYS_PER_YEAR,
1.62824170038242295e-03 * DAYS_PER_YEAR,
-9.51592254519715870e-05 * DAYS_PER_YEAR],

5.15138902046611451e-05 * SOLAR_MASS)
}

def combinations (1):
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result = []
q = len(1l) - 1

for x in range(0, q, 1):
i=x+1
1s = 1[i:]

for y in 1s:
result.append ((1[x],

return result

SYSTEM = 1list (BODIES.values())
PAIRS = combinations (SYSTEM)

def advance(dt, n):
for i in range(0, n, 1):
for p in PAIRS:

x1 = p[0][0][0]
y1 = plo][0][1]
z1 = p[o][0][2]
vi = p[0][1]
ml = p[0][2]

x2 = p[11[01[0]
y2 = p[11[0][1]
z2 = pl11[0][2]
v2 = pl[1][1]
m2 = pl[1][2]

dx = x1 - x2

dy = y1 - y2
dz = z1 - z2

mag = dt * ((dx * dx + dy * dy + dz * dz) **x (-1.5))

bim = ml * mag

b2m = m2 * mag

v1i[0] -= dx * Db2m
vi[1] -= dy * Db2m
vi[2] -= dz * Db2m
v2[0] += dx * bim
v2[1] += dy * bim
v2[2] += dz * Dbim

for b in SYSTEM:

r = b[0]
vx = b[1][0]
vy = b[1]1[1]
vz = b[1][2]
m = b[2]

r[0] += dt * vx
r[1] += dt * vy
r[2] += dt * vz

y))
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def report_energy():

for p in PAIRS:

x1 = p[0][0][0]
yl1 = pl[01[0][1]
z1 = p[0l[0][2]
vl = pl[0]I[1]
ml = p[0][2]

x2 = p[11[0][0]
y2 = p[11[0][1]
z2 = p[1][0][2]
v2 = p[1][1]
m2 = p[1][2]

dx = x1 - x2

dy = y1 - y2
dz = zl1 - z2
e -= (m1 * m2) / ((dx * dx + dy * dy + dz * dz) *x 0.5)

for b in SYSTEM:

r = b[0]
vx = b[1][0]
vy = b[1][1]
vz = b[1][2]
m = b[2]

e +=m *x (vx * vx + vy * vy + vz *x vz) / 2.0

return e

def offset_momentum(ref):

for b in SYSTEM:

r = b[0]
vx = b[1][0]
vy = b[1][1]
vz = b[1][2]
m = b[2]
PX -= VX * m
py -= vy * m
Pz -= vz * m
v = ref[1]

m = ref [2]
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v[0] = px / m
v[1i] = py / m
v[2] = pz / m
def bench_nbody(loops, reference, iterations):
offset_momentum (BODIES [reference])
range_it = range (0, loops, 1)
for _ in range_it:
report_energy ()
advance (0.01, iterations)
report_energy ()
bench_nbody (DEFAULT_LOOPS, DEFAULT_REFERENCE, DEFAULT_ITERATIONS)
L1STING 5.3: The NBODY benchmark implementation, adapted from [40].
3.4 PI

The PI benchmark shown in Listing 5.4 approximates the value of 7 to 800 digits using
an iterative algorithm. The benchmark does not finish on the evaluation platform under
configurations 1 or 2. The operating system Kkills the process because of high memory
consumption. Configurations 3 and 4 consume less memory and do finish.

Features Under Stress

The PI benchmark uses a lot of integer arithmetics to iteratively calculate the next digits
of pi. Found digits are stored in a list object and earlier digits are retrieved from that same
list to find and append the next digit, making it heavy on list access as well.

Profiler Data

As mentioned, the benchmark generated under configuration 1 does not finish on the
evaluation platform due to high memory consumption. No profiler data is available for
the benchmark under this configuration. Configuration 4 does finish. The profiler data
shows that list iteraction makes up about 64% of samples. Included in this is the boxing
of specialized integer values, good for a portion of 54% of total samples. Integer object
creation is responsible for 81% of samples. Figure A.5 shows a graphical representation of
the complete profiler output for build configuration 4.

# Adapted from https://crypto.stanford.edu/pbc/notes/pi/code.
html

LIMIT = 2800
def bench(limit):
for k in range (0, 100):

r = [1; # len(r) will be limit + 1
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b =20
c =20
for _ in range (0, limit):

r.append (2000)
r.append (0)
result = []
for k in range(limit, O, -14):

d =0
i=xk

while True:

+= r[i] * 10000
=2 *x i -1

d=d /b

i -=1

if (i == 0):
break

d =d % i

result.append(c + d / 10000)
c =d % 10000

bench (LIMIT)

L1sTING 5.4: The PI benchmark implementation, adapted from [23].

Note: there is an implementation of a PI benchmark which specifically stresses large
integers. Tython’s semantics do not allow for more than 4 digits of m before an integer
overflow occurs (see Chapter 5 Section 5).

3.5 Sieve

The Sieve benchmark, shown in Listing 5.5, finds all prime numbers up to N = 30000 000.
It works by first instantiating a list of booleans of length N, marking all indexes as candi-
date prime numbers. At the end of the algorithm, a number & is prime iff the element in
the list at index k is True. The algorithm iterates over the elements of the list until the
condition k? < N evaluates to false. For N = 30000000 this happens at k = 5478. Lastly,
the benchmark iterates over the entire list and counts the number of primes encountered.

Features Under Stress

This benchmark is heavy on list access. The instantiation of the list of candidate primes
involves 30000001 calls to the list object’s append method. The program then iterates over
list elements 5478 times (reading an element value at every iteration) with an inner loop
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Function % of samples
_set 28%

object is_truthy 27%

range iterator mnext 16%

list _subscript 9%

box _internal 8%

resolve builtin_method 8%

TABLE 5.8: A summary of the profiler output for the Sieve benchmark under build
configuration 1.

iterating over even more list elements setting list elements to False. Lastly, the benchmark
iterates over 29999999 list elements, and reads their value.

Profiler Data

The profiler data in Table 5.8 and Table 5.9 quantify the involvement of list operations.
See Figure A.6 and Figure A.7 for more detailed graphical profiler output.

Shown in Table 5.8 is a summary of the profiler data for the benchmark under build
configuration 1. Roughly 28% of samples are found in the __set__ function, which deals
with setting the value of a list element.

27% of samples are found in the function object_is_truthy, which handles the truthi-
ness evaluation of arbitrary objects. In this program, the loop conditions and if-statements
are evaluated very often. For the range-based for-loops, the iterator is incremented at every
iteration. Hence, 16% of samples are encountered in the function range_iterator_next.

The function list_subscript handles list access by index and makes up approximately
9% of profiler samples. This function is evoked from the program source code on line 12
and 19, and indirectly as a delegate of __set__ on line 14. Another 8% of samples is found
in the function box_internal. This function is responsible for boxing specialization values,
making them suitable for the object runtime. box_internal is only called from __set__
in this program. About 8% of samples are found in the function resolve_builtin_method,
which resolves the list object’s append method.

For configuration 4, the profiler measures a very different result. Table 5.9 shows that
the function int_create comprises 45% of samples. The function is responsible for the allo-
cation and instantiation of integer objects. It is called from __set__ through box_internal.
The function int_create is also iteratively called to transform the boolean literal (imple-
mented as a specialized integer) on line 7 from a register value into an object. The function
object_is_truthy takes up 31% of samples. The functions resolve\_builtin\_method and
range_iterator_next are good for about 7% and 6% of samples respectively. Only about
1% of samples is found in the function 1ist_subscript.

Reasoning

Figure 5.1 shows that the Sieve benchmark executables under non-specializing build con-
figurations are significantly faster than the specializing builds. The profiler data offers us
an understanding of why that is. Table 5.9 shows that the benchmark executable gener-
ated under build configuration 4 spends a lot of time on the creation of integer objects.
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Function % of samples
int_create 45%

_set 40%

box internal 31%

object is_truthy 31%

resolve builtin_method 7%

range iterator next 6%

list subscript 1%

TABLE 5.9: A summary of the profiler output for the Sieve benchmark under build
configuration 4.

This is because specialization values must be boxed before they can be used by the object
runtime, which handles list operations. Lists are handled through the object execution
model because they have no specialized representation. Configuration 1 does not create
specialization values; recall from Chapter 5 Section 1.3 that Yv € Value.7(v) = Object.
This means that boxing is not necessary. In the function box_internal, if a value v has
type Object, the function simply returns the contained object pointer.

# Adapted from https://www.geeksforgeeks.org/python-program-for-
sieve-of-eratosthenes/

def SieveOfEratosthenes (num):

prime = []
for i in range (0, num+1):
prime.append (True)

p = 2
while (p * p <= num):

if (prime[p] == True):
for i in range(p * p, num+l, p):
prime[i] = False
p +t= 1

count = 0
for p in range(2, num+1):
if primel[p]:
count += 1

print ("count: " + str(count))

SieveOfEratosthenes (30000000)

L1sTING 5.5: The sieve benchmark implementation, adapted from [13].
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3.6 Quicksort

The benchmark in Listing 5.6 is a recursive implementation of the quicksort algorithm,
adapted from [12]. Quicksort is an efficient general sorting algorithm.

Features Under Stress

Quicksort sorts lists, and is therefore continually involved with reading from and writing
to the list to be sorted. It also compares many of the list elements. The benchmark is a
recursive implementation, and is heavy on function calls.

Profiler Data

The profiler shows that, under configuration 1, the generated executable is heavy on the
comparison of integer objects ( 17%). The addition of integers for the pivot and the
indeces of the partitions has a significant portion of samples at about 20%. Most of these
samples are found in the delegate function in_create. The creation of integers for source-
level literals, for the results of integer object comparisons, and for the results of integer
arithmetics adds up to about 59% of total samples. List access is about 14% of samples.
For configuration 4, profiling the generated executable still results in approximately 58% of
samples found in the function int_create. However, integer values have been specialized
and arithmetics operations are not run through the object execution model (so no integer
objects are created to store the operation results). List access does now require the boxing
of specialized integer values (21%), which also results in the creation of integer objects.
Comparison between elements of a list object, good for 20% of samples, goes through
the object execution model and still involves the creation of integer objects. A graphical
representation of the complete profiler output for build configurations 1 and 4 is shown in
Figure A.8 and Figure A.9.

# Adapted from https://www.geeksforgeeks.org/python-program-for-
quicksort/

def partition(array, low, high):
pivot = array[high]
i = low - 1

for j in range(low, high):
if array[j] <= pivot:

i=1i+1
temp = arrayl[i]
array[i] = arrayl[j]

array[j] = temp

temp = array[i + 1]
array[i + 1] = arrayl[high]
array [high] = temp

return i + 1
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def quickSort(array, low, high):

if low < high:
pi = partition(array, low, high)
quickSort (array, low, pi - 1)
quickSort (array, pi + 1, high)
def foo():
data = [1, 7, 4, 1, 10, 9, -2, ] #... omitted for brevity
size = len(data)
quickSort (data, 0, size - 1)
for _ in range (0, 1000):

foo ()

LISTING 5.6: The quicksort benchmark implementation, adapted from [12].

3.7 NQueens

The NQueens benchmark, shown in Listing 5.7, determines whether N queens can be
placed on a chessboard of dimensions N * N such that no queens attack each other.

Features Under Stress

The implementation uses recursion to solve the NQueens problem, involving many function
calls. The chessboard is implemented as a list of lists, making the benchmark involve a
large degree of list access.

Profiler Data

For configuration 1, the profiler shows a large number of samples (49%) in the zip function.
This function makes heavy use of subscript access to range objects (30%). List access is
good for about 5% of samples. Integer object comparison makes up 11% of samples. In
total, integer object creation accounts for 38% of samples. Under configuration 4, the zip
function makes up about 64% of samples. Range subscript access is also high at 38% of total
samples. List access makes up 8% of samples. Integer creation contributes less than under
configuration 1, with approximately 21% of total samples. A graphical representation of
the complete profiler output for build configurations 1 and 4 is shown in Figure A.10 and
Figure A.11.

# Adapted from https://www.geeksforgeeks.org/python-program-for-n-
queen -problem-backtracking -3/

import util

N = 18

def isSafe(board, row, col):
for i in range(0, col):
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if board[row][i] == 1:
return False

-1), range(col, -1, -1)):

for z in zip(range(row, -1
== 1:

if board[z[0]]1[z[1]]
return False

[

for z in zip(range(row, N
if board[z[0]][z[1]]
return False

1), range(col, -1, -1)):
= 1:

-

return True

def solveNQUtil (board, col):
if col >= N:
return True

for i in range (0, N):

if isSafe(board, i 0l):

, C
board[i] [col] = 1

if solveNQUtil (board, col + 1) == True:
return True

board[i][col] = O
return False

def solveNQ():

board = []
for _ in range(0, N):
row = []
for _ in range(0, N):

row.append (0)
board.append (row)

solveNQUtil (board, O0)

solveNQ ()

LI1STING 5.7: The nqueens benchmark implementation, adapted from [11].

4 Discussion

In this section, we discuss the benchmark measurements of Tython, CPython and Codon.
Figure 5.2 shows the mean execution times for each benchmark under the three different

compilers.
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FIGURE 5.2: The mean execution times for each benchmark under the three dif-
ferent compilers.

4.1 Tython

The four build configurations allow for the isolated evaluation of the performance impact to
type shifting and specialization. To summarize, build configuration 1 only generates object
values. Since Yv € Spec.7(v) = Object no specialization of operations on scalar types takes
place at runtime, although the full type guards are generated for all uses of all values.
All operations on objects are delegated to the object execution model. Configuration 2
maintains the same invariant, generating only object values. However, it does not generate
type guards at all. All operations on values are delegated to the object execution model
without an unnecessary first-layer type check. Configuration 3 applies specialization of
values where possible. It generates type guards for all uses of all values, and does not
apply any type guard reduction. Similarly, Configuration 4 also applies specialization
of values where possible, and generates type guards for all uses of all values. However,
configuration 4 also applies type guard reduction.

Configuration 1 simulates a worst-case scenario where all type guards result in a delega-
tion to the object execution model for further type checking. Comparing build configura-
tions 1 and 2 shows the potential overhead incurred by type guards, Tython’s first layer of
type checking. The measured overhead puts an upper bound on the potential performance
increase to be gained from the reduction of type checks. Table 5.2 shows this overhead per
benchmark. The mean value is 10.9%.

Comparing configurations 3 and 4 give us an intuition on how successfully Tython can
reduce type checks. Since the reduction of dynamic type checks is the result of general
optimizations, this comparison can be overly optimistic in describing the performance
impact of type check reduction. This comparison therefore puts an upper bound on the
efficacy of Tython’s type check reduction. Table 5.2 shows the performance increase per
benchmark, yieling a mean value of 9.9%. For the benchmarks NBODY and NQueens,
the impact of type shifting through general optimizations is negligable (-0.2% and 0.1%
respectively).

The maximum potential performance impact of type guard reduction is at most the
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relative comparison of configurations 1 and 2. At the same time, the performance impact
of Tython’s implementation of type guard reduction through general optimizations is at
most the relative comparison between configuration 3 and 4. For the measurements taken
in Chapter 5 Section 2, the mean maximum potential performance improvement of type
guard reduction is 10.9%. The optimistic estimate of the performance gain from Tython’s
implementation of type guard reduction through general optimizations reaches a mean
value of 9.9%.

Lastly, since neither configuration reduces type checks, comparing build configurations
1 and 3 gives us an isolated measure of the performance impact of Tython’s specializa-
tion strategy. Table 5.2 gives a mean improvement of 15.4%, but this varies greatly per
benchmark. The Fibonacci benchmarks both have a performance increase of over 98%.
Tython is able to specialize all values and operations, completely bypassing the object ex-
ecution model. Most benchmarks have a positive performance impact. However, the Sieve
benchmark sees a performance decrease of 165% applying the specialization strategy. The
rationale for this is that the specializing values generated under configuration 4 must be
boxed before they can be used to index or be put into a list object.

The measurements and profiler data show that the clear bottleneck in performance
is the creation of objects. Tython generates leaky executables which negatively affects
the measurements of operations in the object execution model. However, since all build
configurations we compare suffer from the same mechanism of memory leakage, the findings
in this project are relevant regardless.

4.2 CPython

Table 5.10 shows the benchmark results for CPython. Both Fibonacci benchmarks are
faster in Tython. The recursive implementation is 91% faster, and the forward implemen-
tation is 93% faster. The PI benchmark is also faster in Tython, with a 44% performance
gain. All other benchmarks are slower, with NBODY 408% slower, NQueens 404% slower,
Quicksort 211% slower, and Sieve 23% slower (in the best case). We attribute the speed-up
of Tython over CPython for the Fibonacci benchmark to the fact that Tython employs its
specializing execution model and type shifting maximally in both, eliminating all runtime
type checks and entirely circumventing the object execution model. Tython also success-
fully applies specialization and type shifting in the PI benchmark. Furthermore, Tython,
being an ahead-of-time compiler, does not have the general overhead of an interpreter [50].
The benchmarks where Tython is slower than CPython are also those where Tython shows
smaller or negative performance gains between its own build configurations. The creation
of heap objects makes up a significant portion of the execution of those benchmarks. In
contrast, CPython has an effective garbage collector, making object creation less of an is-
sue. In addition, CPython employs its own bespoke optimizations to achieve its relatively
fast performance.

4.3 Codon

The benchmark results for Codon are shown in Table 5.11. Codon is faster than CPython
on all benchmarks except NQueens, where it is 103% slower. It is 95% faster on the
recursive Fibonacci benchmark, 93% faster on forward Fibonacci, 76% faster on NBODY,
56% faster on Quicksort, and 52% faster on Sieve.

These performance gains are achieved by the fact that Codon is also an ahead-of-time
compiler and does not have an interpretation overhead. It applies program-wide static
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Fastest Time Mean Time Median Time Max Time Variance (s?)

fibonacci (recursive) 0.5397 0.5598 0.5429 0.6521  0.0011
fibonacci (while) 0.1427 0.1468 0.1459 0.1545  0.0000
nbody 0.5044 0.5220 0.5219 0.5376 0.0001
nqueens 0.3461 0.3550 0.3497 0.3815 0.0001
pi 5.9917 6.2516 6.2417 6.5880  0.0325
quicksort 0.6080 0.6293 0.6245 0.6842 0.0004
sieve 2.0504 2.1801 2.1195 2.8238 0.0477

TABLE 5.10: The benchmark results for CPython (times in seconds).

type inference and does not maintain any runtime type information.
Note that Codon fails to run the PI benchmark, raising a type error that float does
not match the expected type int on line 32. This is, however, valid Python code.

Fastest Time Mean Time Median Time Max Time Variance (s?)

fibonacci (recursive) 0.0254 0.0274 0.0273 0.0292  0.0000
fibonacci (while) 0.0099 0.0107 0.0109 0.0114  0.0000
nbody 0.1244 0.1257 0.1256 0.1273 0.0000
nqueens 0.6957 0.7213 0.7262 0.7321 0.0001
pi 0.0000 0.0000 0.0000 0.0000 0.0000
quicksort 0.2723 0.2769 0.2770 0.2824 0.0000
sieve 1.0315 1.0420 1.0389 1.0578 0.0001

TABLE 5.11: The benchmark results for Codon (compiled, times in seconds).



Chapter 6

Concluding remarks

In this section, we will answer the research questions laid out in Chapter 6 Section 2.
The project comprises an abstract compiler design and a concrete implementation for
evaluation. In chapter 3, the design describes an execution model for a specializing Python
compiler, with a method for type-shifting Python’s dynamic type system towards a static
one at compile time. In chapter 4 we introduce Tython, which implements this design using
LLVM Core for code generation, a tagged union for the specialization data structure, a
C runtime library for the object execution model and a composition of general LLVM
optimizations to achieve emergent type shifting. chapter 5 evaluates Tython, quantifying
the performance impact of the compiler design.
This project has put forward the following research questions:

1. What static type information can be inferred from a Python program without type
annotations?

2. How can we propagate static type information to reduce dynamic type checks?
3. How can we specialize runtime values to circumvent the object execution model?

4. What is the performance impact of the reduction of dynamic type checks and the
specialization of runtime values?

1 What static type information can be inferred from a Python
program without type annotations?

The main characteristic of a dynamic language is that types are associated with values,
not variables. To obtain static typing, where types are associated with variables, we will
need to propagate the known type information of values to variables.

Chapter 6 Section 2.3 describes a method for achieving this. Definition 3 says that if
all write operations to a variable « are statically known, and all write operands are of the
same type t, we can statically determine the type of a to be t.

To achieve this, we must find all write operations to a variable at compile-time. Tython
achieves this with early binding (Chapter 6 Section 3.1). Early binding provides compile-
time access to all uses of a variable.

We must then also statically know the types of the operands of these write operations.
Chapter 6 Section 4.1 shows that static type information is known for source-level liter-
als. These are atomic expressions, so their type is unambiguous. The implementation

o6
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furthermore shows that for some expressions composed of operands with known types, the
resulting type of evaluating the expression can also statically be determined.

If for a variable « all write operations are statically known, and all those write op-
erations are literals or expressions whose type can be statically determined we can use
Definition 3 to infer the type of a variable a: Yw € W.r(w) =t = type(a) =t.

2 How can we propagate static type information to reduce
dynamic type checks?

The first research question shows how static type information can be obtained from Python
source code. Chapter 6 Section 1 shows that Tython contains two layers of dynamic type
information. The first layer distinguishes the two scalar specialization types Integer and
FloatingPoint, and the general Object type. Chapter 6 Section 2.2 describes type guards,
which are the dynamic type checks for this first layer. Chapter 6 Section 1.2 shows how
type guards are implemented in Tython.

The second layer of dynamic type information is handled by delegating to the object
execution model. The design of this domain is entirely dynamically typed, and so no static
type information can be propagated into it. We can therefore only reduce dynamic type
checks for the first layer.

Tython implements type guards in the internal execution model described in Chapter
6 Section 1.1. The reduction of these type guards is described in Chapter 6 Section 4 and
its implementation in Tython is shown in Chapter 6 Section 4.2. Tython achieves type
guard reduction through emergent behaviour as a result of the application of three general
LLVM optimizations. Scalar Replacement of Aggregates (SROA) effectively propagates the
static type information associated with variables. If successful, this makes a type guard a
conditional branch on the comparison of two constants (the static type of a guarded variable
a and the type of a tag) for each tag € Tag. Sparse Conditional Constant Propagation
(SCCP) removes these trivial conditional branching instructions, leaving one unconditional
branch and two unreachable CFG nodes. Lastly, Simplify the CFG (simplifycfg) deletes the
unreachable CFG nodes and merges the now unconditional branch, where type(a) = tag,
into straight-line code.

The successful application of these three transformations removes a type guard entirely.

3 How can we specialize runtime values to circumvent the
object execution model?

Chapter 6 Section 2 describes a data and execution model that can specialize on the
scalar types Integer and FloatingPoint. Tython implements the Spec data model as a
tagged union (Chapter 6 Section 1.1). All values in the internal execution model are of
the form Spec, such that Vv € Spec.7(v) € Tag. This invariant allows us the generation of
exhaustive type guards at compile time. Being able to distinguish between values of type
Integer, FloatingPoint, and Object enables Tython’s first layer of dynamic typing.

The content of a value is obtained by applying the function p. Tython’s tagged union
implementation stores the content of all values in a address-wide bitstring. The interpre-
tation of this bitstring depends on the value’s tag, and is at compile time encoded in each
of the type guard branches by the partial application of the function 7. If an operation €2
is a specializing operation, the content of a value of type Integer of FloatingPoint can
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be operated on directly by the appropriate specialization {};,; or €1y, respectively. This
happens without any delegation to the object execution model.

4 What is the performance impact of the reduction of dy-
namic type checks and the specialization of runtime val-
ues?

In Chapter 6 Section 2 we hypothesize that the reduction of runtime type checks and
the specialization of values leads to performance improvements. The metric of interest is
execution time. chapter 5 evaluates the performance of benchmark executables generated
by the Tython implementation under different build configurations. We have designed
the 4 different build configurations Tython to give us an isolated insight into the relative
performance impact of compiler design choices.

The impact of type shifting is found in the comparison between configurations 1 and
2, and between configurations 3 and 4.

The results in Chapter 6 Section 2 show that the reduction of type guards has a
positive potential impact on all benchmarks, with a mean performance gain of 10.9%. The
application of general optimizations to achieve type shifting has a positive impact for most
benchmarks, with a mean value of 9.9%. This latter value is likely an overestimation, since
the application of general optimizations likely has more effects than only reducing type
guards.

The impact of specialization is found in the comparison between configurations 1 and
3. The mean performance impact is positive, with a performance gain of 15.4%. However,
this impact varies greatly depending on the benchmark, and is even shown to have a large
negative impact of -165.4% in one particular benchmark. The greatest performance gain
is 98.5%, where Tython is able to entirely circumvent the object execution model.

5 Future work

One of the most obvious missing language features is user-defined classes. The omission of
it in this thesis is related to the limited scope of the project. It could warrant a separate
study. Tython may be a good platform to start this experimentation from.

Tython still uses late binding (the lookup of symbols at runtime) for object methods.
A next version can look into the early binding of methods and object attributes, which has
the potential to further improve performance.

Specialization on more types could also result in better performance. In particular the
inability to specialize on collection access (such as lists, tuples and dictionaries) creates a
significant overhead in Tython. All specialization values are boxed when delegated to the
object execution model. Bringing these collection objects into the internal execution model
has the potential to drastically reduce this boxing overhead. Furthermore, Python collec-
tion types are hetergeneous, making static type inference hard or impossible. A common
solution for this problem is the introduction of a dynamic (or any) type, as implemented
in for instance Reticulated Python [47] and TypeScript [1]. This making a heterogenous
collection such as a list of type List<Any>.

Currently, the general optimizations that Tython applies to achieve type shifting are
local to functions. This means that static type information is never propagated across the
function boundary. Future work could investigate the possibility of monomorphization (as
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applied by Codon) or the "seeding" of functions with static type information for the LLVM
optimization passes to pick up on.

There is also potential in supporting gradual typing through Python type annotations.
Similar to the idea of "seeding" functions, these annotations could serve as a way to nudge
type shifting in the right direction.

Lastly, future efforts could look into allowing a programmer to choose when to give up
Pythonic semantics for performance. Currently, if specialization is enabled, Tython ag-
gressively tries to specialize values where it can. Having user-defined symbols or regions of
specialization (or inversely, symbols or regions of safe semantics) could benefit the adoption
of Tython.
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build/bin/fibonacci_while
Total samples: 192
Focusing on: 192

Dropped nodes with <= 0 abs(samples)

Dropped edges with <= 0 samples

_start
0 (0.0%)
of 192 (100.0%)

__libe_start_main_impl

0 (0.0%)

of 192 (100.0%)
~libe_tart_call_main
0 (0.0%)
of 192 (100.0%)

192

ma
0 (0.0%)
of 192 (100.0%)

192

fib
2(1.0%)
of 192 (100.0%)

int_rich_compare
6 (3.1%)

of 48 (25.0%)

int_add
7 (3.6%)
of 82 (42.7%)

int_ credte
7 (3.6%)
of 164 (85.4%)

157

pool_alloc
8 (4.2%)
of 157 (81.8%)

149

default_alloc
4 (2.1%)
of 149 (77.6%)

145

h2 / 2

default_seqalloc
18 (9.4%)
of 145 (75.5%)

126

GI___libc_malloc
9 (4.7%)
of 126 (65.6%)

110

A

object_is_truthy
10 (5.2%)
of 11 (5.7%)

1

y

convert_to_int
2(1.0%)

int_to_bool
1(0.5%)

checked_request2size

1(0.5%)

_int_malloc
108 (56.2%)
of 110 (57.3%)

sysmalloc
4 (2.1%)
of 7 (3.6%)

R

Y
alloc_perturb
2 (1.0%)

libe_mor

__glibc_morecore
0 (0.0%)
of 3 (1.6%)

-a

o

A A

__sbrk
0.0%)
1.6%)

B
A A

_brk

3(1.6%)

FIGURE A.1: The profiler output of the forward Fibonacci benchmark under Con-
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build/bin/fibonacci_rec
Total samples: 1139
Focusing on: 1139

Dropped nodes with <=5 abs(samples)
Dropped edges with <=1 samples

FIGURE A.2: The profiler output of the recursive

Configurationl.

1
0 (0.0%)

0
of 1139 (100.0%)

1139

__libe_star_main_impl
0 (0.0%)
9 (100.0%)

of 113

1139

__libe_start_call_main
0(0.0%)
of 1139 (100.0%)

1139

0.(0.0%)
of 1139 (100.0%)

1139

bench
1(0.1%)
of 1139 (100.0%)

1138

fib
29 (2.5%) )135@4
of 1138 (99.9%)

B4a2 \\\¢¥i\\ 127 91
int_rich_compare int_add int_sub
480 19 (1.7%) 60.5%) 11 (1.0%)
of 342 (30.0%) of 69 (6.1%) of 127 (11.2%)

B23 61 2

int_create
72 (6.3%)
of 976 (85.7%)

po4

pool_alloc
26 (2.3%)
of 904 (79.4%)

78

default_alloc
34 (3.0%)
of 878 (77.1%)

44

default_seqalloc
107 (9.4%)
of 844 (74.1%)

[733

_GI___libc_malloc
84 (7.4%)
of 733 (64.4%)

635 13

_int_malloc
632 (55.5%)
of 635 (55.8%)

object_is_truthy
82 (7.2%)
of 91 (8.0%)

o

convert_to_int
6 (0.5%)

int_to_bool
9 (0.8%)

sysmalloc
0(0.0%)

of 13 (1.1%)

of 13 (

__brk
13 (1.1%)

Fibonacci benchmark under
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build/bin/nbody
Total samples: 815
Focusing on: 815

Dropped nodes with <= 4 abs(samples)
Dropped edges with <= 0 samples

advance

27 (3.3%)
of 814 (99.9%)

int_create
36 (4.4%)
of 430 (52.8%)

bw

pool_alloc
29 (3.6%)
of 607 (74.5%)

fm

default_alloc
19 (2.3%)
of 581 (71.3%)

62

default_seqalloc

of 562 (69.0%)

70 (8.6%)

89

_GI___libc_malloc

40 (4.9%)
of 489 (60.0%)

fﬂ

21

_int_malloc
426 (52.3%)
of 427 (52.4%)

g

63

float_mult

14 (1.7%)
of 128 (15.7%)

float_add
12 (1.5%)
of 68 (8.3%)

float_sub
10 (1.2%)
(7.7%)

of 63

sysmalloc
9 (1.1%)
of 21 (2.6%)

float_create
9 (1.1%)
of 222 (27.2%)

list_subscript
17 (2.1%)

box_internal
10 (1.2%)

FIGURE A.3: The profiler output of the NBODY benchmark under Configurationl.
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build/bin/nbody

Total samples: 700

Focusing on: 700

Dropped nodes with <= 3 abs(samples)
Dropped edges with <= 0 samples

advance
25 (3.6%)
of 697 (99.6%)

96 126

pool_alloc
28 (4.0%)
of 522 (74.6%)

of 495 (70.7%)

66

default_seqalloc
49 (7.0%)
of 466 (66.6%)

B

GI___libc_malloc
44 (6.3%)
of 415 (59.3%)

_int_malloc
348 (49.7%)
of 351 (50.1%)

FIGURE A.4: The profiler output of the NBODY benchmark under Configuration4.

of 145 (20.7%)

tuple_subscript
18 (2.6%)

abject_is_truthy

6%)
of 5 (0.7%)

0

float_create

12/ (1.7

of 138 (19.7%)

sysmalloc
13 (1.9%)

of 20 (2.9%)
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build/bin/pi
Total samples: 952
Focusing on: 952

Dropped nodes with <= 4 abs(samples)

Dropped edges with <= 0 samples

_start
0 (0.0%)

of 952 (100.0%)

D52
A

__libe_start_main_impl
0 (0.0%)
of 952 (100.0%)

D52
A 4

__libe_start_call_main
0 (0.0%)
of 952 (100.0%)

D51
A 4

main
0 (0.0%)
of 951 (99.9%)

D51
A A

bench
43 (4.5%)
of 951 (99.9%)

580
A A

__set__
51 (5.4%)
of 580 (60.9%)

278

515
A A

\

object_to_primitive
27 (2.8%)

box_internal
17 (1.8%)
of 515 (54.1%)

list_subscript
34 (3.6%)

1498

int_create
46 (4.8%)
of 776 (81.5%)

730
Y

pool_alloc
16 (1.7%)
of 730 (76.7%)

714

default_alloc
28 (2.9%)
of 714 (75.0%)

H86

default_seqalloc

95 (10.0%)

of 686 (72.1%)

586

__GI___libc_malloc

52 (5.5%)
of 586 (61.6%)

510

24

_1nt_malloc
507 (53.3%)
of 510 (53.6%)

sysmalloc
11 (1.2%)
of 24 (2.5%)
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build/bin/sieve

Total samples: 776

Focusing on: 776

Dropped nodes with <= 3 abs(samples)
Dropped edges with <= 0 samples

SieveOfEratosthenes
51(6.6%)
of 776 (100.0%)

719 11

object_is_truthy
180 (23.2%)
of 211 (27.2%)

S|
ey
—_
iyl
2
R
N

of 219 (28.2%)

53 64 9

list_subscript
71 (9.1%)

range_iterator_to_bool

box_internal
64 (8.2%)

29 (3.7%)

27 61

range_iterator_next
127 (16.4%)

resolve_builtin_method
15 (1.9%)

of 61 (7.9%)

16

__stremp_avx2
46 (5.9%)

list_append
42 (5.4%)

470.5%)

int_add
of 19 (2.4%)

bool_create
157 (1.9%)

_int_malloc
19 (2.4%)

F1GURE A.6: The profiler output of the Sieve benchmark under Configurationl.
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build/bin/sieve
Total samples: 1914

Focusing on: 1914
Dropped nodes with <=9 abs(samples)

Dropped edges with <=1 samples

SieveOfEratosthenes
3

35 (1.8%)
of 1914 (100.0%)

__set__
98 (5.1%)
of 773 (40.4%)

range_iterator_next

124 (6.5%)

object_is_truthy
512 (26.8%)
of 607 (31.7%)

32

list_subseript

box_internal
33 (1.7%)

39 (2.0%)

range_iterator_to_bool
2 (1.1%)

of 651 (34.0%)

int_create
60 (3.1%)
of 869 (45.4%)

pool_alloc
26 (

2 %)
of 809 (42.3%)

default_seqalloc
69 (3.6%)
of 750 (39.2%)

577

__GI___libc_malloc
76 (4.0%)
of 677 (35.4%)

&76 25

_int_malloc
570 (29.8%)

of 576 (30.1%)

sysmalloc

9 (0.5%)
of 25 (1.3%)

__brk
15 (0.8%)

int_to_bool

73 (3.8%)

list_append
37 (1.9%)

resolve_builtin_method
24 (1.3%)
of 72 (3.8%)

ps

__stremp_avx2
48 (2.5%)

FIGURE A.7: The profiler output of the Sieve benchmark under Configuration4.
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build/bin/quicksort
Total samples: 624
Focusing on: 624

Dropped nodes with <= 3 abs(samples)

Dropped edges with <= 0 samples

of 596 (95.5%)

partition
29 (4.6%)

int_add
11 (1.8%)
of 125 (20.0%)

\ 17
int_rich_compare

range_iterator_next

21 (3.4%) 8 (1.3%)

of 109 (17.5%)

s

int_create
26 (4.2%)
of 371 (59.5%)

range_length_c
(0.5%)
of 9 (1.4%)

b

pool_alloc

30 (4.8%)
of 345 (55.3%)

ceilf64x@@GLIBC_2.27
6 (1.0%)

t.s

default_alloc
18 (2.9%)
of 325 (52.1%)

07

default_seqalloc
37 (5.9%)
of 307 (49.2%)

67

__GI___libc_malloc
30 (4.8%)
of 267 (42.8%)

}ZO 1

_int_malloc
219 (35.1%)
of 220 (35.3%)

sysmalloc

of 16 (2.6%)

of 47 (7.5%)

object_is_truthy
52 (8.3%)
of 54 (8.7%)

/

list_subscript
65 (10.4%)

box_internal

12 (1.9%)

F1GURE A.8: The profiler output of the Quicksort benchmark under Configura-
tionl.
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build/bin/quicksort
Total samples: 550
Focusing on: 550

Dropped nodes with <= 2 abs(samples)
Dropped edges with <= 0 samples

0.0%)
of 550 (100.0%)

0.0.0%)
of 550 (100.0%)

oo
0.0.0%)
of 550 (100.0%)

quickSort
0

1(0.2%)
of 545 (99.1%)

44

partition
24 (4.4%)
of 544 (98.9%)

112 /3

int_rich_compare

of 112 (20.4%)

16 (2.9%)

of 163 (29.6%)

_set__
35 (6.4%) 37

box_internal
20 (3.6%)
of 119 (21.6%)

loe
int_create

19 (3.5%)
of 319 (58.0%)

00
pool_alloc
26 (4.7%)

of 300 (54.5%)

a

list_subscript
46 (8.4%)

74

default_alloc
11 (2.0%)
of 277 (50.4%)

66

default_seqalloc
27 (4.9%)
of 266 (48.4%)

37

GI___libc_malloc
14 (2.5%)
of 237 (43.1%)

09

_int_malloc
208 (37.8%)
of 209 (38.0%)

sysmalloc

3(0.5%)
of 14 (2.5%)

elibe_m

00.0%)
of 11 (20%)

__brk
117(2.0%)

4 61
range_iterator_next e
18 (3.3%) of 4 (0.7%)

ngth_c
(0.2%)
of 5 (0.9%)

range_le
1

ceilf64x@ @GLIBC_2.27
4(0.7%)

object_is_truthy
56 (10.2%)
of 61 (11.1%)

range_iterator_to_bool
3(0.5%)

FIGURE A.9: The profiler output of the Quicksort benchmark under Configura-

tion4.
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build/bin/nqueens

Total samples: 784

Focusing on: 784

Dropped nodes with <= 3 abs(samples)
Dropped edges with <= 0 samples

iy
7(0.9%)
—| of 384 (49.0%)

=2

<

Vian)

cn

gth_c
59 (7.5%)
of 180 (23 )

ceilf64x@ @GLIBC_2.27
121 (15.4%)

02

default_seqalloc

42 (5.4%)

of 302 ( )
bss

—-Gl-tibemalloe /
26 (3.3%)

of 325 (41.5%)

82 16

_int_ma“OC
284 (36.2%) | [ 7%,
of 289 (36.9%)

F1GURE A.10: The profiler output of the NQueens benchmark under Configura-

tionl.

Tange_iterator_next
8.(1.0%)

e

uthy
42/(5.4%)
of 52 (6.6%)
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build/bin/nqueens

Total samples: 581

Focusing on: 581

Dropped nodes with <= 2 abs(samples)
Dropped edges with <= 0 samples

bs1

SolveNQUUI
4(0.7%) [
of 581 (100.0%)

Safe
23 (4
of 570 (98

object_to_primitive
11 (1.9%)

_ 12 99)
of 17 (2.9%)
27 8 8 52 g
ubscript 12 b2s ’"*“‘“‘—“““““ﬂ‘&‘!’;‘: range_iterator_next
28 (4.8%) - ] of 8 (14%) 21 (3.6%) 3 (0.9%)

26 [

stremp_ava2
4(0.7%)

range_subscript
8 (1.4%)
of 223 (38.4%)

|26 20
yr — oF

Y int_creats range_length_c
s 9 1 (1.9%) 53 (9.1%)
of 172 (29.6%)

1o

ceilf64x@ @GLIBC_2.27
119 (20.5%)

%)
of 146 (251%)
a2
default_seqalloc
12

(2.1%)
of 142 (24.4%)

30

_GI___libe_malloc _
16 (2.8%) g———""1_
of 216 (37.2%)

7 l

_int_malloc
198 (34.1%)
of 200 (34.4%)

F1GURE A.11: The profiler output of the NQueens benchmark under Configura-
tion4.
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