RAMS-Europe 2025 06.08.2025

FAULT TREE SYNTHESIS FROM KNOWLEDGE GRAPHS

AIMÉ NTAGENGERWA, GEORGIANA CALTAIS, MARIËLLE STOELINGA

THE GOAL

A Lycoming O-320-D2A installed in a Symphony SA-160 By Ahunt at English Wikipedia, Public Domain https://commons.wikimedia.org/w/index.php?curid=8015248

MOTIVATION

- Incompatible modeling languages across engineering teams
- Limited system knowledge is early design stages
- Risk analysis is costly

Hence...

- Central conceptual model of CPS design (ontology)
- Minimal knowledge assumptions
- Automatic synthesis of risk models (Fault Trees)

OVERVIEW

- **Methodology Overview**
- Background
- From Knowledge Graphs to Fault Trees
 Running Example
- Limitations and Future Work

METHODOLOGY

OVERVIEW

- Methodology Overview
- **Background**
- From Knowledge Graphs to Fault Trees
 Running Example
- Limitations and Future Work

KNOWLEDGE GRAPHS

- Knowledge base with a graph structure
- Supports fact inference
 - I.e. (Driver, drives, Car) implies (Driver, has, License)
- Structured by an ontology (a conceptual model)
- It's all about the *instances*
 - I.e. (Charles Leclerc, drives, Ferrari SF-24 Formula 1)

OUR CONCEPTUAL MODEL

- Describes the domain of CPS design
- Minimal knowledge assumptions
 - Compositionality
 - Functionality

FAULT TREES

- Visual causal model
- Basic Events, Gates and a Top-level Event
- Risk analysis
 - Minimal cut sets (MCS)

MCS: { Front brakes fail, Rear brakes fail }, { Steering failure }

OVERVIEW

- Methodology Overview
- Background
- From Knowledge Graphs to Fault Trees
 Running Example
- Limitations and Future Work

RUNNING EXAMPLE

- Lycoming O-320 aircraft engine
- Designed for reliability

A Lycoming O-320-D2A installed in a Symphony SA-160By Ahunt at English Wikipedia, Public Domain
https://commons.wikimedia.org/w/index.php?curid=8015248

... A BETTER LOOK

- We see that an engine consists of many components, i.e.:
 - Cylinders and pistons
 - Ignition system
 - Lubrication system
 - etc.

A Lycoming OH-320-D2A cutaway
By KOMRADE DIMITRI, Own work, CC BY-SA 4.0
https://commons.wikimedia.org/w/index.php?curid=133450956

THE IGNITION SYSTEM

- The simplified diagram shows:
 - Cylinders
 - Spark plugs
 - Magnetos¹
- And interestingly
 - Two magnetos
 - Two spark plugs per cylinder

[1] Magnetos convert mechanical energy into highvoltage electricity.

Instantiates the conceptual model

with the system design

... Unreadable

FDEP GRAPH CONSTRUCTION

CHAINS OF FUNCTIONAL DEPENDENCY

EXAMPLE

FDEP GRAPH CONSTRUCTION

REDUNDANCY STRUCTURES

EXAMPLE

FDEP GRAPH CONSTRUCTION

EXAMPLE

FAULT TREE SYNTHESIS

FAULT TREE SYNTHESIS

FAULT TREE SYNTHESIS

Lycoming OH-320 Fails **EXAMPLE** OR Cylinder 1 Fails to Do Work OR Cylinder 1 AND Cylinder 1 Internal Spark Spark Spark Plug 1 Spark Plug 1 (Top) Fails to *Produce Spark* (Bottom) Fails to Produce Spark Spark Plug 1 Spark Plug 1 Mechanical Mechanical Force (Top) Force (Bottom) Magneto 1 Magneto 2 Fails to Produce Fails to Produce Electricity Electricity Spark Plug 1 Spark Plug 1 Electricity Electricity (Top) (Bottom) OR Internal OR Internal Magneto 1 Magneto 2 Cylinder 1 Cylinder 1 Fails to Do Work Fails to Do Work Magneto 1 Magneto 2 Internal Internal UNIVERSITY 29 OF TWENTE.

RISK ANALYSIS

A Lycoming O-320-D2A installed in a Symphony SA-160 By Ahunt at English Wikipedia, Public Domain https://commons.wikimedia.org/w/index.php?curid=8015248

- Just Cylinder 1 fails
- Both spark plugs fail
- Both magnetos fail
- The top spark plug and magneto 2 fail
- The bottom spark plug and magneto 1 fail

OVERVIEW

- Methodology Overview
- Background
- From Knowledge Graphs to Fault Trees
 Running Example
- **Limitations and Future Work**

LIMITATIONS

- Cycles are hard!
- No dynamic behavior
- No quantity specifications
 - Flow rates, units, multiplicity
 - Failure probability

FUTURE WORK

- A stronger ontology:
 - Grounded in a Foundational Ontology (UFO)
 - Quantified, explicit requirements
 - Dynamic system model
 - Failure probabilities of components
- How do we get the system design into the knowledge graph?
- More models!

