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SUMMARY & CONCLUSIONS 

A truly effective diagnostic system provides system 
engineers with valuable insights into the behavior of their 
machines, leveraging a rich body of (often tacit) 
expertise. Much of this expertise typically resides in 
written documentation or troubleshooting manuals, 
which are frequently imprecise or vaguely specified. 
Therefore, methods for formalizing this knowledge, such 
as through the use of knowledge graphs, are of particular 
interest. However, ensuring that the extracted knowledge 
(ideally in a semi-automatic way) encapsulates sufficient 
semantic depth for system-level diagnostics is a 
challenging task. In this paper, we propose a minimal 
format for knowledge graphs that is semantically rich 
enough to facilitate the synthesis of meaningful fault 
trees. Fault trees offer an intuitive and efficient means for 
systematic failure analysis, enabling engineers to assess 
all potential failure modes in a structured, hierarchical 
manner. The methodology is applied to the Lycoming O-
320 engine, showing that meaningful fault trees can be 
synthesized from only structural and functional 
knowledge of the system, defined by the proposed 
conceptual model. 

1 INTRODUCTION 

Cyber-Physical Systems (CPSs) are complex 
machinery that integrate computational and physical 
functionality [1]. Companies commonly design such 
machines from a compositional and functional 
perspective. For instance, Model-Based Systems 
Engineering (MBSE) is a methodology that supports 
engineering activities through the use of connected 
models [2]. SysML [3][4] and Arcadia [5] are popular 
examples of MBSE languages that allow for the 
structural and functional decomposition of a system. 
Tooling allows for validating properties of the model, 
such as consistency with respect to model constraints. 

The task of structurally and exhaustively modeling 
explicit failure mechanisms is time-consuming and 
challenging, often crossing boundaries between 
engineering teams and domains of expertise. As a result, 
many organizations do not have sufficient explicit 
knowledge about failures at a system level. Failure Mode 

and Effects Analysis (FMEA) [6] is a common method 
of failure analysis. The result of applying this method is 
a document with text and tables (called worksheets), 
which require manual upkeep throughout a system 
lifecycle. While FMEA allows for the structural analysis 
of failure modes, worksheet entries are large and difficult 
to read [7]. The construction of FMEA documents is a 
time-consuming and tedious task [8] and depends largely 
on effective communication an alignment between the 
different teams and domain experts in the organization. 
It is error-prone and many potential failure mechanisms 
are not uncovered [9]. Since FMEAs are often created 
and maintained in plain text, they may suffer from 
inconsistencies and contradictions. Copy-paste errors are 
common, as are ambiguities and misunderstood 
semantics between different authors of FMEAs [7]. The 
lack of explicit fault knowledge of the system under 
design (especially across domain boundaries) can lead to 
missed opportunities in designing a robust system. 

The integration of system design knowledge from 
different sources provides additional ways of exploring 
failure mechanisms at a system level. Knowledge graphs 
(KGs) are a popular method of integrating such 
knowledge across design teams and domain boundaries. 
However, visualizations of  KGs are typically large and 
hard to interpret. (Formal) reasoning over a knowledge 
graph is possible, but developing the right reasoning 
rules is a challenging and time-consuming task. An 
effective model for explaining possible failure modes 
and mechanisms is the Fault Tree (FT). The semantics of 
FTs are well defined, with many formal analysis methods 
available out-of-the-box [10]. However, manually 
creating FTs is time-consuming, hard and error-prone. 

Figure 1 – The methodology of transforming KGs to FTs  
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Our approach. We propose a methodology to 
automatically transform knowledge graphs into fault 
trees, see Figure 1. Our methodology starts with a 
knowledge graph, presenting the structural 
decomposition and functional specification of CPSs. The 
ontology of the KG describes exactly how a CPS’s 
components, functions, and resources interact, and 
captures enough knowledge to synthesize meaningful 
FTs. In particular, the KG allows us to automatically 
discover redundancy in the system. Technically, failure 
propagation is discovered through SPARQL queries. 
These extract data from the KG used to build two models: 
a graph of functional dependency chains and a graph of 
redundancy structures. Both are then combined to 
synthesize fault trees. This automatic transformation 
greatly reduces the effort involved in obtaining and 
maintaining FTs. 

Running Example. We will use the (simplified) 
design of the Lycoming O-320 aircraft engine as a 
running example to illustrate our methodology. The 
system knowledge and data formats available for the 
Lycoming engine is representative of the aforementioned 
issues, where there are no models of the system under 
design, only plain-text descriptions and diagrams 
[11][12], and knowledge of the different aspects of the 
engine (domains) is not integrated in one model. The 
ignition subsystem is tasked with igniting the fuel 
mixture in the cylinder to create a mechanical force. The 
engine is designed with the goal of resiliency to failure 
in mind, and is equipped with two redundant sets of 
ignition systems. They operate in parallel and largely 
independent from each other. This particular engine is 
equipped with magnetos, which convert the cylinder’s 
mechanical energy into electrical energy. This electricity 
is then transported to the spark plugs, which in turn 
generate a spark to ignite the fuel mixture. We 
demonstrate that our proposed methodology yields 
meaningful FTs, generated from the structural and 
functional decomposition of the Lycoming O-320 
aircraft engine. 

Overview of the paper. We provide related work in 
Section 2. We introduce background on knowledge 
graphs and fault trees in Section 3 and Section 4 
respectively. Section 5 introduces our proposed ontology 
and relates CPS design knowledge to failure propagation. 
Section 6 shows our method for transforming knowledge 
graphs to fault trees. 

2 RELATED WORK 

Several approaches exist to obtain fault trees from 
system models. The work in [13] describes a method to 
synthesize FTs from SysML’s Internal Block Diagrams 
(IBD). IBDs represent a system’s internal structure and 
the interactions between its components through ports. 
This approach relies on specific SysML semantics, while 

we argue that the conceptual model proposed in our work 
is generally applicable to KGs that contain structural and 
functional system knowledge, regardless of the modeling 
language in which such system knowledge is originally 
expressed. This allows us to integrate different models 
(in different modeling languages) that describe the same 
system. The work in [14] allows for the automatic 
generation of FTs from SLIM models (an extension of 
AADL). While these FTs are expressive and accurate, the 
synthesis methodology requires detailed error models of 
a system. In contrast, our approach infers FTs from a 
static system model. 

Hip-HOPS [15] aims to address the inconsistency of 
failure analysis techniques that are often found in 
practice. The methodology integrates Functional Failure 
Analysis (FFA), Failure Mode and Effect Analysis 
(FMEA), and Fault Tree Analysis (FTA). Hip-HOPS 
introduces a novel algorithm for fault tree synthesis. 
However, the Hip-HOPS methodology involves manual 
analysis of system models and requires domain 
knowledge to uncover explicit fault knowledge. 

When fault semantics are encoded in an ontology, 
like in [16], generating FTs from KGs that instantiate 
such an ontology may be more straight-forward. The 
ontology presented in [17] explicitly encodes FT 
concepts. However, both these ontologies restrict the 
applicability to KGs where explicit fault knowledge is 
already present. The synthesis of FTs from KGs based on 
only structural and functional system designs is a key 
value proposition of our approach. 

3 KNOWLEDGE GRAPHS 

A knowledge graph (KG) is a knowledge-based 
system that integrates information into an ontology and 
allows for the derivation of new knowledge using a 
reasoner [18]. A well- known example of a KG is 
Wikidata [19], the underlying technology on which 
Wikipedia is built. An ontology is a conceptual model 
that describes how concepts in a certain domain relate to 
each other. A reasoner is a system of logical inference 
that makes explicit facts from implied knowledge. For 
instance, a KG containing the facts (John, isA, Person) 
and (Julia, isA, Person), together with the inference rule 
all persons are equal leads to the addition of a new, 
explicit fact in the KG (John, isEqualTo, Julia). KGs 
typically comprise three layers of abstraction. 
• The ontology layer is the highest level of abstraction, 

where real-world concepts and the relationships 
between them are described. 

• The second layer is called the taxonomy, and 
provides a hierarchy of types. Together with the 
ontological layer, this forms conceptual model. 

• The lowest abstraction level contains instances of the 
conceptual model. 

  



Figure 2 – a KG of the running example 
Example. Figure 2 shows a visualization of the KG 
describing (a part of) the Lycoming O-320 engine. The 
figure shows a hierarchy of components (modeled by the 
partOf relation), the exchange of resources (determined 
by the inputFrom and outputsTo relations), and functions 
and resources (modeled by the has, and the produces and 
consumes relations respectively). The predicate edge 
label corresponds to a relationship described in the 
ontological layer of the KG. For instance, the nodes 
“Ignition System 1” and “Lycoming O-320” in Figure 3, 
related through the partOf relation are encoded in an 
RDF graph as the triple (“Ignition System 1”, partOf, 
“Lycoming O-320”). The coloring of the nodes in Figure 
2 is a simplified visual representation of the actual RDF 
graph. Figure 3 shows the meaning of these colors. For 
example, the green color of the node “Magneto 1” is 
shorthand for the existence of an additional RDF fact 
(“Magneto 1”, rdf:type, Component) that is not shown. 

4 FAULT TREES 

A Fault Tree (FT) is a deductive, hierarchical model 
used to analyze the causes of system-level failures. It 
represents the logical relationships between component 
failures and overall system failures using a graphical 
structure. The root node of a fault tree typically denotes 
a critical failure event (Top Event), and the leaf nodes 
represent basic component failures or events. Logical 
gates, such as AND and OR, are used to connect these 
events, illustrating how multiple failures can combine to 
result in higher-level failures [10]. For OR gates, the 
output event is observed if any of its input events occur. 
For AND gates, the output event is only observed if all 
of its input events occur. Fault trees are extensively used 
in safety and reliability engineering to systematically 
analyze potential faults. By mapping failure pathways, 
they help identify vulnerable components, assess risk 
probabilities, and propose mitigation strategies. Fault 
Tree Analysis (FTA) is a prominent technique in risk 
analysis [10]. FTA methodologies are applied in many 
engineering and governmental domains [20][21]. FTs 
can facilitate qualitative analysis by, for instance, helping 
to determine minimal cut sets – the smallest 

combinations of basic events that can cause the top event. 
FTs could also support quantitative analysis, such as 
calculating the probability of the top level event 
occurring based on the probabilities of basic events. Such 
probabilistic analysis methods only work if statistical 
fault data of basic events is available. 

In our study, we synthesize Fault Trees inferred from 
the structural and functional system knowledge encoded 
in a KG. To keep the knowledge assumptions minimal, 
we assume no statistical knowledge of fault events, 
making the synthesized FTs particularly suitable for 
qualitative analysis. 
5 ONTOLOGY FOR THE FUNCTIONAL DESIGN OF CPS 

An important ingredient in our framework is the 
ontology, being the first layer of the knowledge graph, 
see Figure 3. Our proposed ontology describes the 
structural composition of components in CPSs and 
associates them with their expressed function. Our 
ontology is tailored to capture sufficient knowledge of 
CPS failure propagation and generate meaningful FTs. It 
is common in industrial practice to model systems in a 
compositional and functional way [22]. 

Figure 3 – The proposed ontology 
Components are digital or physical objects that have 

the ability to express some function. Components often 
comprise other components as constituents. A 
component without constituents is called a part or atomic 
[23]. As such, a part is the boundary of where a designer 
stops modeling finer structural details of a component. It 
is up to a designer to determine what the boundaries of a 
component are. We call a component that is not a 
constituent of any other component a system. 

A function describes the ability of a component to 
deliver a service. That service is delivered by 
transforming some input resource into some output 
resource. We specify the types of input and output 
resources, analogous to how we specify a mathematical 
function’s domain and range. 

A resource is any form of energy, such as material, 
electricity, or information. This is a broad definition that 
encompasses many of the substances, data and 
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interactions involved in the operation of a CPS. 
Examples of concrete resources include gas, water, 
pressure, control commands or data streams. In the 
modeling process, we sometimes do not consider a 
function’s undesired or inconsequential inputs and 
outputs. For instance, we may not model the waste heat 
that bicycle brake pads produce. Where to draw such 
system boundaries is a design choice. 

We distinguish two special types of functions, 
denoted by the subclassOf relation: consumption and 
production. If a function consumes some resource, it is a 
consumption. If a function produces some resource, it is 
a production. A concrete function can be an instance of 
both a consuming and a producing function. In the 
running example, all functions are both consuming and 
producing. 

The partOf relation describes the composition of 
components. For any two components c1 and c2, we say 
that c1 is a constituent of c2 if and only if (c1, partOf, c2). 
This relation is transitive, such that for any components 
c1, c2, c3, it holds that (c1, partOf, c2) ∧ (c2, partOf, c3) → 
(c1, partOf, c3). As a result, c1 is a constituent of both c2 
and c3. 

The has relation denotes the ability of a component 
to express a certain function. In this work, we assume that 
if a component has the ability to express a function, it 
does express the function. Similarly, if a function has the 
ability to consume or produce some resource, it does 
consume or produce that resource. Therefore, in the rest 
of this paper the has relation may be interpreted as “the 
transformation of resources continuously performed by a 
component”. We call these assumptions liveliness. They 
enable the generation of FTs from a static view of the 
system. 

The consumes and produces relations indicate the 
particular resources that a function consumes and 
produces, respectively. A function can consume and 
produce any number of different resources. 

The inputFrom and outputsTo relations indicate the 
ability of components to exchange resources. This 
resource exchange is constrained by the ability of one 
component to supply a resource (production), and the 
ability of another component to accept that resource 
(consumption). Under the liveliness assumption, all 
functions, including production and consumption 
functions, are expressed continuously, so we extend the 
liveliness assumption to include this resource exchange: 
if components have the ability to exchange resources, 
they do exchange resources. 
5.1 Failure Terminology 

This subsection relates the standard notions of faults, 
errors, and failures to the concepts of functional 
dependency and failure propagation. Following [23], a 
failure is an event that occurs when a system’s delivered 

service deviates from its correct service. An error is a 
part of the system state that may lead to a system failure. 
The cause of an error is called a fault. Faults that do not 
cause an error are called dormant. 

However, since under the liveliness assumptions all 
functions are constantly enabled and expressed, a fault 
will always immediately cause an error. In other words, 
there are no dormant faults. Because a fault will, under 
these assumptions, always induce an error, we combine 
the two concepts into one for convenience: a fault event 
is defined as the (spontaneous) inability of a component 
to express its designed functions. 

During operation, a fault event may occur at a 
component, resulting in a component failure. We define 
failure propagation as the effect we observe when a 
component failure is in itself an event that leads to the 
failure of another component. This is similar to the 
definition of external error propagation in [23]. 

Fault events correspond to Basic Events (BE), 
intermediate events and Top-Level Events (TE) in FTs. 
We call a fault event a BE when it occurs at a component 
whose functions are not implemented through delegation 
to a constituent component. We call a fault event an 
intermediate event when it is the logical result of the 
occurrence of one or more other fault events. We call a 
fault event a TE when it is an intermediate event that 
occurs at a component that is a system. 
5.2 Functional Dependency and Failure Propagation 

For a component c2 that has a consumption function, 
in order to consume some resource r, that resource needs 
to be available to c2. Resources are made available 
through a resource exchange between components, 
described by the two IO relations. For this resource 
exchange to happen, there must be a component c1 that 
has a production function p that produces the resource r. 
We say that component c2 is functionally dependent on 
c1 for resource r, denoted c1 <r c2. 
The functional dependency between two components 
gives rise to a causal failure relationship between 
components c1 and c2. We can now define failure 
propagation under the liveliness assumption: for any two 
functionally dependent components c1 <r c2, when a fault 
event occurs at component c1, preventing it from 
producing the resource r that c2 depends on, there are two 
scenarios: 
1. There exists no other component on which c2 is 

dependent that produces resource r, and c2 fails, or; 
2. There does exist another component c3 on which c2 

is dependent that produces the resource r, and 
therefore c2 continues to function. 

The question of whether a failure propagates from c1 to 
c2 is answered by determining the existence of a third 
component c3, such that we can confirm or refute the 
statement c3 <r c2. 



Chains of Functional Dependency: A sequence of 
components with a pair-wise functional dependency 
forms a chain of functional dependency. Assume that 
each component in this chain receives their required 
resources from only a single component. By the 
definition of failure propagation, when any component in 
this chain fails, all subsequent components in that chain 
can no longer express their designed functions and also 
fail. This aligns with the fault semantics of the FT’s OR 
gate, where the fault propagates to a higher level of the 
tree when any one of its child nodes fails. 

Functional Redundancy: A component can be 
function- ally dependent on more than one component for 
the same resource. In this paper, failure propagates to cn 
if and only if all components that supply resource r to cn 
fail. This is equivalent to a conjunction of the failures of 
all components ck where ck <r cn. This matches the 
semantics of the FT’s AND gate: faults propagate to a 
higher level of the tree when all of its child nodes fail. 
Note that this may over-approximate the robustness of 
the system. 

6 METHODOLOGY 

The transformation of a KG to an FT takes three 
steps. First, we query the KG to extract a functional 
dependency graph from it. This enables the construction 
of OR gates. Second, we identify redundancy structures 
in the KG and add them to the dependency graph, 
enabling the construction of AND gates. Third, we map 
the nodes in this functional dependency graph to BEs, 
intermediate events, TEs, and gates. The mapping of 
functional dependency structures to FT elements follows 
the definition of failure propagation (Section 5.2). We 
use SPARQL [24] to query the KG. This semantic query 
language enables complex graph queries, supporting 
pattern matching, filtering and aggregation, all founded 
in formal semantics [25]. A query can be written based 
on the KG’s ontology, similar to how schemas define 
structure in relational databases. We use queries to 
extract functional dependency chains and redundancy 
structures from the KG. One can observe a straight-
forward correspondence between the query triples and 
the definition of failure and failure propagation described 
in Section 5.2. 
6.1 The Functional Dependency Graph 

Figure 4 – Functional dependency chains (a) and redundancy 
structures (b). 

 

The functional dependency graph is a simple data model 
(a Del graph) where each node is a component, and each 
edge denotes a “depends on” relationship between its tail 
component and its head component. The label associated 
with each edge describes the resource(s) for which the 
tail component is dependent on the head component, as 
illustrated in Figure 4a. Listing 1 shows the SPARQL 
query that extracts functional dependency. Applying this 
to the running example results in Figure 5. 

1 SELECT ?c1 ?io ?c2 WHERE { 
2 ?c1 rdf:type :Component. 
3 ?c2 rdf:type :Component. 
4 ?c1 :has ?f1. 
5 ?f1 rdf:type :Production. 
6 ?f1 :produces ?resource. 
7 ?c2 :has ?f2. 
8 ?f2 rdf:type :Consumption. 

9 ?f2 :consumes ?resource. 
10 {?c1 ?io ?c2.} UNION {?c2 ?io ?c1.}. 
11 FILTER (?io IN (:inputFrom, :outputsTo)) } 

Listing 1 – SPARQL query extracting functional dependency 

Figure 5 – Functional dependency graph for the running 
example. In red, a redundancy structure. 

At this point, the functional dependency graph may 
implicitly contain redundancy structures. The next step is 
to identify them in the KG and make them explicit. An 
example is shown in Figure 4b. We use the query shown 
in Listing 2 to identify redundancy structures in the 
functional dependency graph, illustrated by the red edges 
in Figure 5. 

1 SELECT ?c1 ?c3 ?resource ?c2 WHERE { 
2 ?c1 rdf:type :Component. 
3 ?c3 rdf:type :Component. 
4 ?c2 rdf:type :Component. 
5 {?c1 ?io1 ?c2.} UNION {?c2 ?io1 ?c1.}. 
6 {?c3 ?io2 ?c2.} UNION {?c2 ?io2 ?c3.}. 
7 ?c1 :has ?f1. 
8 ?f1 rdf:type :Production. 

9 ?f1 :produces ?resource. 
10 ?c3 :has ?f2. 
11 ?f2 rdf:type :Production. 
12 ?f2 :produces ?resource. 
13 ?c2 :has ?f3. 
14 ?f3 rdf:type :Consumption. 
15 ?f3 :consumes ?resource. 
16 FILTER (?io1 IN (:inputFrom, :outputsTo)). 
17 FILTER (?io2 IN (:inputFrom, :outputsTo)). 
18 FILTER (?c1 != ?c3) } 

Listing 2 – SPARQL query extracting redundancy structures  
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6.2 Fault Tree Synthesis 

The last step is generating the FT. A component can 
spontaneously be subject to a fault event, creating an 
“internal failure” BE for each component. An OR gate is 
generated, and the “internal fault” BE is added as a child 
to this. Recall from Section 5.2 that a component may fail 
if another component that it functionally depends on 
fails. Whether or not it depends on the availability of a 
third component to supply that same resource. For any 
component c2 in the functional dependency graph, find 
all outgoing edges. For each of these edges, determine if 
it is in a redundancy structure with c2 for each of its 
corresponding resources ri. If so, generate an AND gate 
between the OR gate labeled c2 and all other components 
in that redundancy structure for ri. Lastly, generate an 
additional OR gate, a child of the OR gate labeled c2, for 
each of the components that c2 is functionally dependent 
on, but are not in a redundancy structure with c2. 
Applying this methodology to the example results in an 
FT (Figure 6). 

Figure 6 – Synthesized FT for Lycoming O-320 engine. In 
yellow, the intermediate events that correspond to component 

failures. In green, the BEs for internal fault events. 

7 CONCLUDING REMARKS 

We have shown how meaningful fault trees can be 
synthesized under a small set of knowledge assumptions. 
This enables qualitative fault tree analysis methods to be 
applied over a KG that contains no explicit fault 
information. The liveliness assumption simplifies this 

synthesis process. However, the FTs may suggest 
potential failure modes that do not exist in the actual 
CPS’s operational modes. Future work could investigate 
whether incorporating system state and time information 
in the methodology may address this issue, potentially at 
the cost of requiring more explicit system knowledge in 
the KG. Furthermore, the inference of redundancy 
structures may over-approximate the robustness of a 
system. Our proposed methodology does not distinguish 
a redundancy structure from a component that requires 
an identical resource from two distinct sources. Future 
work may extend the ontology with an explicit 
redundancy concept. Lastly, we hypothesize that it is 
possible to match subsets of SysML and Arcadia models 
to our proposed ontology, making our methodology 
available to existing system models. 

ACKNOWLEDGEMENT 

This publication is part of the project 
ZORRO with project number 
KICH1.ST02.21.003 of the research 
programme Key Enabling Technologies 
(KIC) which is (partly) financed by the 
Dutch Research Council (NWO). 

REFERENCES 

1. R. Baheti and H. Gill, “Cyber-physical systems,” The 
impact of control technology, 2011. 

2. K. Henderson and A. Salado, “Value and benefits of 
model-based systems engineering (MBSE): Evidence 
from the literature,” Systems Engineering, 2021. 

3. M. Hause et al., “The SysML modelling language,” 
Fifteenth European systems eng. conf., 2006. 

4. S. Friedenthal, A. Moore, and R. Steiner, A practical guide 
to SysML: the systems modeling language, Morgan 
Kaufmann, 2014. 

5. S. Bonnet, J.-L. Voirin, D. Exertier, and V. Normand, 
“Not (strictly) relying on SysML for MBSE: Language, 
tooling and development perspectives: The 
Arcadia/Capella rationale,” SysCon, 2016. 

6. D. H. Stamatis, Failure mode and effect analysis: FMEA 
from theory to execution, Quality Press, 2003. 

7. M. Signor, “The failure-analysis matrix: a kinder, gentler 
alternative to FMEA for information systems,” Proc. Ann. 
Reliability & Maintainability Symp., 2002. 

8. T. Montgomery, D. Pugh, S. Leedham, and S. Twitchett, 
“FMEA automation for the complete design process,” 
Proc. Ann. Reliability & Maintainability Symp., 1996. 

9. C. Spreafico, D. Russo, and C. Rizzi, “A state-of-the-art 
review of FMEA/FMECA including patents,” Computer 
Science Review, 2017. 

10. E. Ruijters and M. Stoelinga, “Fault tree analysis: A 
survey of the state-of-the-art in modeling, analysis and 
tools,” Computer science review, 2015. 

  

Magneto 1
Internal

AND

Magneto 1
Fails to Produce

Electricity

Cylinder 1
Fails to Do Work

Spark Plug 1
(Top)

Internal

Spark Plug 1
(Top)

Fails to Produce Spark

OR

OR

Cylinder 1
Fails to Do Work

OR

Cylinder 1
Internal

Magneto 2
Internal

Magneto 2
Fails to Produce

Electricity

Cylinder 1
Fails to Do Work

Spark Plug 1
(Bottom)
Internal

Spark Plug 1
(Bottom)

Fails to Produce Spark

OR

OR

OR

Lycoming OH-320
Fails



11. Overhaul Manual Direct Drive Engine, Williamsport, 
Pennsylvania, Textron Lycoming, 1974. 

12. O-320 Series Operator’s Manual, Williamsport, 
Pennsylvania, Lycoming, 2006. 

13. F. Mhenni, N. Nguyen, and J.-Y. Choley, “Automatic 
fault tree generation from SysML system models,” 
International Conference on Advanced Intelligent 
Mechatronics, 2014. 

14. M. Bozzano, A. Cimatti, J. Katoen, V. Y. Nguyen, T. Noll, 
and M. Roveri, “Safety, dependability and performance 
analysis of extended AADL models,” Comput. J., 2011. 

15. Y. Papadopoulos and J. A. McDermid, “Hierarchically 
performed hazard origin and propagation studies,” 
Computer Safety, Reliability and Security, 1999. 

16. X. Meng, B. Jing, S. Wang, J. Pan, Y. Huang, and X. Jiao, 
“Fault knowledge graph construction and platform 
development for aircraft PHM,” Sensors, 2024. 

17. L. Shen, H. Tang, L. Wang, J. Cai, and X. Cui, “A fault 
knowledge graph creation method and application based 
on fault tree analysis and failure mode, effects and 
criticality analysis,” ICIBA, 2023. 

18. L. Ehrlinger and W. Wöß, “Towards a definition of 
knowledge graphs,” SEMANTICS, 2016. 

19. D. Vrandečić and M. Krötzsch, “Wikidata: a free 
collaborative knowledgebase,” Commun. ACM, 2014. 

20. M. Stamatelatos, W. Vesely, J. Dugan, J. Fragola, J. 
Minarick, and J. Railsback, Fault tree handbook with 
aerospace applications, NASA, 2002. 

21. IEC 61025 Technical Committee et al., Fault tree analysis 
(FTA), IEC Standards Online, 2006. 

22. J. A. Estefan et al., “Survey of model-based systems 
engineering (MBSE) methodologies,” Incose MBSE 
Focus Group, 2007. 

23. A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, 
“Basic concepts and taxonomy of dependable and secure 
computing,” IEEE Transactions on Dependable and 
Secure Computing, 2004. 

24. S. Harris and A. Seaborne, SPARQL 1.1 Query Language, 
W3C, 2013. 

25. J. Pérez, M. Arenas, and C. Gutierrez, “Semantics and 
complexity of SPARQL,” The Semantic Web ISWC, 2006. 

 


