
Fault Tree Synthesis from Knowledge Graphs

Manzi Aimé Ntagengerwa, University of Twente, the Netherlands
Georgiana Caltais, University of Twente, the Netherlands
Mariëlle Stoelinga, University of Twente and Radboud University, the Netherlands

Key Words: fault tree, knowledge graph, model transformation, ontology

SUMMARY & CONCLUSIONS

A truly effective diagnostic system provides system
engineers with valuable insights into the behavior of their
machines, leveraging a rich body of (often tacit)
expertise. Much of this expertise typically resides in
written documentation or troubleshooting manuals,
which are frequently imprecise or vaguely specified.
Therefore, methods for formalizing this knowledge, such
as through the use of knowledge graphs, are of particular
interest. However, ensuring that the extracted knowledge
(ideally in a semi-automatic way) encapsulates sufficient
semantic depth for system-level diagnostics is a
challenging task. In this paper, we propose a minimal
format for knowledge graphs that is semantically rich
enough to facilitate the synthesis of meaningful fault
trees. Fault trees offer an intuitive and efficient means for
systematic failure analysis, enabling engineers to assess
all potential failure modes in a structured, hierarchical
manner. The methodology is applied to the Lycoming O-
320 engine, showing that meaningful fault trees can be
synthesized from only structural and functional
knowledge of the system, defined by the proposed
conceptual model.

1 INTRODUCTION

Cyber-Physical Systems (CPSs) are complex
machinery that integrate computational and physical
functionality [1]. Companies commonly design such
machines from a compositional and functional
perspective. For instance, Model-Based Systems
Engineering (MBSE) is a methodology that supports
engineering activities through the use of connected
models [2]. SysML [3][4] and Arcadia [5] are popular
examples of MBSE languages that allow for the
structural and functional decomposition of a system.
Tooling allows for validating properties of the model,
such as consistency with respect to model constraints.

The task of structurally and exhaustively modeling
explicit failure mechanisms is time-consuming and
challenging, often crossing boundaries between
engineering teams and domains of expertise. As a result,
many organizations do not have sufficient explicit
knowledge about failures at a system level. Failure Mode

and Effects Analysis (FMEA) [6] is a common method
of failure analysis. The result of applying this method is
a document with text and tables (called worksheets),
which require manual upkeep throughout a system
lifecycle. While FMEA allows for the structural analysis
of failure modes, worksheet entries are large and difficult
to read [7]. The construction of FMEA documents is a
time-consuming and tedious task [8] and depends largely
on effective communication an alignment between the
different teams and domain experts in the organization.
It is error-prone and many potential failure mechanisms
are not uncovered [9]. Since FMEAs are often created
and maintained in plain text, they may suffer from
inconsistencies and contradictions. Copy-paste errors are
common, as are ambiguities and misunderstood
semantics between different authors of FMEAs [7]. The
lack of explicit fault knowledge of the system under
design (especially across domain boundaries) can lead to
missed opportunities in designing a robust system.

The integration of system design knowledge from
different sources provides additional ways of exploring
failure mechanisms at a system level. Knowledge graphs
(KGs) are a popular method of integrating such
knowledge across design teams and domain boundaries.
However, visualizations of KGs are typically large and
hard to interpret. (Formal) reasoning over a knowledge
graph is possible, but developing the right reasoning
rules is a challenging and time-consuming task. An
effective model for explaining possible failure modes
and mechanisms is the Fault Tree (FT). The semantics of
FTs are well defined, with many formal analysis methods
available out-of-the-box [10]. However, manually
creating FTs is time-consuming, hard and error-prone.

Figure 1 – The methodology of transforming KGs to FTs

SPARQLKnowledge
Graph Synthesis

Functional
Dependency

Graph
Fault Tree

Functional
Dependency

Chains

Redundancy
StructuresSystem Design

Ontology

Our approach. We propose a methodology to
automatically transform knowledge graphs into fault
trees, see Figure 1. Our methodology starts with a
knowledge graph, presenting the structural
decomposition and functional specification of CPSs. The
ontology of the KG describes exactly how a CPS’s
components, functions, and resources interact, and
captures enough knowledge to synthesize meaningful
FTs. In particular, the KG allows us to automatically
discover redundancy in the system. Technically, failure
propagation is discovered through SPARQL queries.
These extract data from the KG used to build two models:
a graph of functional dependency chains and a graph of
redundancy structures. Both are then combined to
synthesize fault trees. This automatic transformation
greatly reduces the effort involved in obtaining and
maintaining FTs.

Running Example. We will use the (simplified)
design of the Lycoming O-320 aircraft engine as a
running example to illustrate our methodology. The
system knowledge and data formats available for the
Lycoming engine is representative of the aforementioned
issues, where there are no models of the system under
design, only plain-text descriptions and diagrams
[11][12], and knowledge of the different aspects of the
engine (domains) is not integrated in one model. The
ignition subsystem is tasked with igniting the fuel
mixture in the cylinder to create a mechanical force. The
engine is designed with the goal of resiliency to failure
in mind, and is equipped with two redundant sets of
ignition systems. They operate in parallel and largely
independent from each other. This particular engine is
equipped with magnetos, which convert the cylinder’s
mechanical energy into electrical energy. This electricity
is then transported to the spark plugs, which in turn
generate a spark to ignite the fuel mixture. We
demonstrate that our proposed methodology yields
meaningful FTs, generated from the structural and
functional decomposition of the Lycoming O-320
aircraft engine.

Overview of the paper. We provide related work in
Section 2. We introduce background on knowledge
graphs and fault trees in Section 3 and Section 4
respectively. Section 5 introduces our proposed ontology
and relates CPS design knowledge to failure propagation.
Section 6 shows our method for transforming knowledge
graphs to fault trees.

2 RELATED WORK

Several approaches exist to obtain fault trees from
system models. The work in [13] describes a method to
synthesize FTs from SysML’s Internal Block Diagrams
(IBD). IBDs represent a system’s internal structure and
the interactions between its components through ports.
This approach relies on specific SysML semantics, while

we argue that the conceptual model proposed in our work
is generally applicable to KGs that contain structural and
functional system knowledge, regardless of the modeling
language in which such system knowledge is originally
expressed. This allows us to integrate different models
(in different modeling languages) that describe the same
system. The work in [14] allows for the automatic
generation of FTs from SLIM models (an extension of
AADL). While these FTs are expressive and accurate, the
synthesis methodology requires detailed error models of
a system. In contrast, our approach infers FTs from a
static system model.

Hip-HOPS [15] aims to address the inconsistency of
failure analysis techniques that are often found in
practice. The methodology integrates Functional Failure
Analysis (FFA), Failure Mode and Effect Analysis
(FMEA), and Fault Tree Analysis (FTA). Hip-HOPS
introduces a novel algorithm for fault tree synthesis.
However, the Hip-HOPS methodology involves manual
analysis of system models and requires domain
knowledge to uncover explicit fault knowledge.

When fault semantics are encoded in an ontology,
like in [16], generating FTs from KGs that instantiate
such an ontology may be more straight-forward. The
ontology presented in [17] explicitly encodes FT
concepts. However, both these ontologies restrict the
applicability to KGs where explicit fault knowledge is
already present. The synthesis of FTs from KGs based on
only structural and functional system designs is a key
value proposition of our approach.

3 KNOWLEDGE GRAPHS

A knowledge graph (KG) is a knowledge-based
system that integrates information into an ontology and
allows for the derivation of new knowledge using a
reasoner [18]. A well- known example of a KG is
Wikidata [19], the underlying technology on which
Wikipedia is built. An ontology is a conceptual model
that describes how concepts in a certain domain relate to
each other. A reasoner is a system of logical inference
that makes explicit facts from implied knowledge. For
instance, a KG containing the facts (John, isA, Person)
and (Julia, isA, Person), together with the inference rule
all persons are equal leads to the addition of a new,
explicit fact in the KG (John, isEqualTo, Julia). KGs
typically comprise three layers of abstraction.
• The ontology layer is the highest level of abstraction,

where real-world concepts and the relationships
between them are described.

• The second layer is called the taxonomy, and
provides a hierarchy of types. Together with the
ontological layer, this forms conceptual model.

• The lowest abstraction level contains instances of the
conceptual model.

Figure 2 – a KG of the running example
Example. Figure 2 shows a visualization of the KG
describing (a part of) the Lycoming O-320 engine. The
figure shows a hierarchy of components (modeled by the
partOf relation), the exchange of resources (determined
by the inputFrom and outputsTo relations), and functions
and resources (modeled by the has, and the produces and
consumes relations respectively). The predicate edge
label corresponds to a relationship described in the
ontological layer of the KG. For instance, the nodes
“Ignition System 1” and “Lycoming O-320” in Figure 3,
related through the partOf relation are encoded in an
RDF graph as the triple (“Ignition System 1”, partOf,
“Lycoming O-320”). The coloring of the nodes in Figure
2 is a simplified visual representation of the actual RDF
graph. Figure 3 shows the meaning of these colors. For
example, the green color of the node “Magneto 1” is
shorthand for the existence of an additional RDF fact
(“Magneto 1”, rdf:type, Component) that is not shown.

4 FAULT TREES

A Fault Tree (FT) is a deductive, hierarchical model
used to analyze the causes of system-level failures. It
represents the logical relationships between component
failures and overall system failures using a graphical
structure. The root node of a fault tree typically denotes
a critical failure event (Top Event), and the leaf nodes
represent basic component failures or events. Logical
gates, such as AND and OR, are used to connect these
events, illustrating how multiple failures can combine to
result in higher-level failures [10]. For OR gates, the
output event is observed if any of its input events occur.
For AND gates, the output event is only observed if all
of its input events occur. Fault trees are extensively used
in safety and reliability engineering to systematically
analyze potential faults. By mapping failure pathways,
they help identify vulnerable components, assess risk
probabilities, and propose mitigation strategies. Fault
Tree Analysis (FTA) is a prominent technique in risk
analysis [10]. FTA methodologies are applied in many
engineering and governmental domains [20][21]. FTs
can facilitate qualitative analysis by, for instance, helping
to determine minimal cut sets – the smallest

combinations of basic events that can cause the top event.
FTs could also support quantitative analysis, such as
calculating the probability of the top level event
occurring based on the probabilities of basic events. Such
probabilistic analysis methods only work if statistical
fault data of basic events is available.

In our study, we synthesize Fault Trees inferred from
the structural and functional system knowledge encoded
in a KG. To keep the knowledge assumptions minimal,
we assume no statistical knowledge of fault events,
making the synthesized FTs particularly suitable for
qualitative analysis.
5 ONTOLOGY FOR THE FUNCTIONAL DESIGN OF CPS

An important ingredient in our framework is the
ontology, being the first layer of the knowledge graph,
see Figure 3. Our proposed ontology describes the
structural composition of components in CPSs and
associates them with their expressed function. Our
ontology is tailored to capture sufficient knowledge of
CPS failure propagation and generate meaningful FTs. It
is common in industrial practice to model systems in a
compositional and functional way [22].

Figure 3 – The proposed ontology
Components are digital or physical objects that have

the ability to express some function. Components often
comprise other components as constituents. A
component without constituents is called a part or atomic
[23]. As such, a part is the boundary of where a designer
stops modeling finer structural details of a component. It
is up to a designer to determine what the boundaries of a
component are. We call a component that is not a
constituent of any other component a system.

A function describes the ability of a component to
deliver a service. That service is delivered by
transforming some input resource into some output
resource. We specify the types of input and output
resources, analogous to how we specify a mathematical
function’s domain and range.

A resource is any form of energy, such as material,
electricity, or information. This is a broad definition that
encompasses many of the substances, data and

outputsTo

has

partOf

Magneto 1

partOf

has

outputsToSpark Plug 1
(Top)

outputsTo outputsTo

has

partOf partOf

Cylinder 1

partOfIgnition
System 1

partOf

has

outputsTo Spark Plug 1
(Bottom)

outputsTo

has

partOf

Magneto 2

partOf Ignition
System 2

produces

Produce
Electricity

consumes

produces

consumes

Do Work

consumes

produces

Produce
Spark

Mechanical
ForceElectricity Spark

produces

Produce
Electricity

produces

consumes

Produce
Spark

ElectricitySpark

Lycoming
OH-320

has Component

Function

subclassOf

consumes

Consumption

subclassOf

produces
Production

partOf

Resource

inputFrom
outputTo

interactions involved in the operation of a CPS.
Examples of concrete resources include gas, water,
pressure, control commands or data streams. In the
modeling process, we sometimes do not consider a
function’s undesired or inconsequential inputs and
outputs. For instance, we may not model the waste heat
that bicycle brake pads produce. Where to draw such
system boundaries is a design choice.

We distinguish two special types of functions,
denoted by the subclassOf relation: consumption and
production. If a function consumes some resource, it is a
consumption. If a function produces some resource, it is
a production. A concrete function can be an instance of
both a consuming and a producing function. In the
running example, all functions are both consuming and
producing.

The partOf relation describes the composition of
components. For any two components c1 and c2, we say
that c1 is a constituent of c2 if and only if (c1, partOf, c2).
This relation is transitive, such that for any components
c1, c2, c3, it holds that (c1, partOf, c2) ∧ (c2, partOf, c3) →
(c1, partOf, c3). As a result, c1 is a constituent of both c2
and c3.

The has relation denotes the ability of a component
to express a certain function. In this work, we assume that
if a component has the ability to express a function, it
does express the function. Similarly, if a function has the
ability to consume or produce some resource, it does
consume or produce that resource. Therefore, in the rest
of this paper the has relation may be interpreted as “the
transformation of resources continuously performed by a
component”. We call these assumptions liveliness. They
enable the generation of FTs from a static view of the
system.

The consumes and produces relations indicate the
particular resources that a function consumes and
produces, respectively. A function can consume and
produce any number of different resources.

The inputFrom and outputsTo relations indicate the
ability of components to exchange resources. This
resource exchange is constrained by the ability of one
component to supply a resource (production), and the
ability of another component to accept that resource
(consumption). Under the liveliness assumption, all
functions, including production and consumption
functions, are expressed continuously, so we extend the
liveliness assumption to include this resource exchange:
if components have the ability to exchange resources,
they do exchange resources.
5.1 Failure Terminology

This subsection relates the standard notions of faults,
errors, and failures to the concepts of functional
dependency and failure propagation. Following [23], a
failure is an event that occurs when a system’s delivered

service deviates from its correct service. An error is a
part of the system state that may lead to a system failure.
The cause of an error is called a fault. Faults that do not
cause an error are called dormant.

However, since under the liveliness assumptions all
functions are constantly enabled and expressed, a fault
will always immediately cause an error. In other words,
there are no dormant faults. Because a fault will, under
these assumptions, always induce an error, we combine
the two concepts into one for convenience: a fault event
is defined as the (spontaneous) inability of a component
to express its designed functions.

During operation, a fault event may occur at a
component, resulting in a component failure. We define
failure propagation as the effect we observe when a
component failure is in itself an event that leads to the
failure of another component. This is similar to the
definition of external error propagation in [23].

Fault events correspond to Basic Events (BE),
intermediate events and Top-Level Events (TE) in FTs.
We call a fault event a BE when it occurs at a component
whose functions are not implemented through delegation
to a constituent component. We call a fault event an
intermediate event when it is the logical result of the
occurrence of one or more other fault events. We call a
fault event a TE when it is an intermediate event that
occurs at a component that is a system.
5.2 Functional Dependency and Failure Propagation

For a component c2 that has a consumption function,
in order to consume some resource r, that resource needs
to be available to c2. Resources are made available
through a resource exchange between components,
described by the two IO relations. For this resource
exchange to happen, there must be a component c1 that
has a production function p that produces the resource r.
We say that component c2 is functionally dependent on
c1 for resource r, denoted c1 <r c2.
The functional dependency between two components
gives rise to a causal failure relationship between
components c1 and c2. We can now define failure
propagation under the liveliness assumption: for any two
functionally dependent components c1 <r c2, when a fault
event occurs at component c1, preventing it from
producing the resource r that c2 depends on, there are two
scenarios:
1. There exists no other component on which c2 is

dependent that produces resource r, and c2 fails, or;
2. There does exist another component c3 on which c2

is dependent that produces the resource r, and
therefore c2 continues to function.

The question of whether a failure propagates from c1 to
c2 is answered by determining the existence of a third
component c3, such that we can confirm or refute the
statement c3 <r c2.

Chains of Functional Dependency: A sequence of
components with a pair-wise functional dependency
forms a chain of functional dependency. Assume that
each component in this chain receives their required
resources from only a single component. By the
definition of failure propagation, when any component in
this chain fails, all subsequent components in that chain
can no longer express their designed functions and also
fail. This aligns with the fault semantics of the FT’s OR
gate, where the fault propagates to a higher level of the
tree when any one of its child nodes fails.

Functional Redundancy: A component can be
function- ally dependent on more than one component for
the same resource. In this paper, failure propagates to cn
if and only if all components that supply resource r to cn
fail. This is equivalent to a conjunction of the failures of
all components ck where ck <r cn. This matches the
semantics of the FT’s AND gate: faults propagate to a
higher level of the tree when all of its child nodes fail.
Note that this may over-approximate the robustness of
the system.

6 METHODOLOGY

The transformation of a KG to an FT takes three
steps. First, we query the KG to extract a functional
dependency graph from it. This enables the construction
of OR gates. Second, we identify redundancy structures
in the KG and add them to the dependency graph,
enabling the construction of AND gates. Third, we map
the nodes in this functional dependency graph to BEs,
intermediate events, TEs, and gates. The mapping of
functional dependency structures to FT elements follows
the definition of failure propagation (Section 5.2). We
use SPARQL [24] to query the KG. This semantic query
language enables complex graph queries, supporting
pattern matching, filtering and aggregation, all founded
in formal semantics [25]. A query can be written based
on the KG’s ontology, similar to how schemas define
structure in relational databases. We use queries to
extract functional dependency chains and redundancy
structures from the KG. One can observe a straight-
forward correspondence between the query triples and
the definition of failure and failure propagation described
in Section 5.2.
6.1 The Functional Dependency Graph

Figure 4 – Functional dependency chains (a) and redundancy
structures (b).

The functional dependency graph is a simple data model
(a Del graph) where each node is a component, and each
edge denotes a “depends on” relationship between its tail
component and its head component. The label associated
with each edge describes the resource(s) for which the
tail component is dependent on the head component, as
illustrated in Figure 4a. Listing 1 shows the SPARQL
query that extracts functional dependency. Applying this
to the running example results in Figure 5.

1 SELECT ?c1 ?io ?c2 WHERE {
2 ?c1 rdf:type :Component.
3 ?c2 rdf:type :Component.
4 ?c1 :has ?f1.
5 ?f1 rdf:type :Production.
6 ?f1 :produces ?resource.
7 ?c2 :has ?f2.
8 ?f2 rdf:type :Consumption.

9 ?f2 :consumes ?resource.
10 {?c1 ?io ?c2.} UNION {?c2 ?io ?c1.}.
11 FILTER (?io IN (:inputFrom, :outputsTo)) }

Listing 1 – SPARQL query extracting functional dependency

Figure 5 – Functional dependency graph for the running
example. In red, a redundancy structure.

At this point, the functional dependency graph may
implicitly contain redundancy structures. The next step is
to identify them in the KG and make them explicit. An
example is shown in Figure 4b. We use the query shown
in Listing 2 to identify redundancy structures in the
functional dependency graph, illustrated by the red edges
in Figure 5.

1 SELECT ?c1 ?c3 ?resource ?c2 WHERE {
2 ?c1 rdf:type :Component.
3 ?c3 rdf:type :Component.
4 ?c2 rdf:type :Component.
5 {?c1 ?io1 ?c2.} UNION {?c2 ?io1 ?c1.}.
6 {?c3 ?io2 ?c2.} UNION {?c2 ?io2 ?c3.}.
7 ?c1 :has ?f1.
8 ?f1 rdf:type :Production.

9 ?f1 :produces ?resource.
10 ?c3 :has ?f2.
11 ?f2 rdf:type :Production.
12 ?f2 :produces ?resource.
13 ?c2 :has ?f3.
14 ?f3 rdf:type :Consumption.
15 ?f3 :consumes ?resource.
16 FILTER (?io1 IN (:inputFrom, :outputsTo)).
17 FILTER (?io2 IN (:inputFrom, :outputsTo)).
18 FILTER (?c1 != ?c3) }

Listing 2 – SPARQL query extracting redundancy structures

C1

r1 C2
r2

C3

C1 r

r

C2

C3

a) c1 <r1 c2 <r2 <c3 b) c1 <r c2 and c3 <r c2

Spark Spark

Cylinder 1

Electricity

Spark Plug 1
(Bottom)

Electricity

Spark Plug 1
(Top)

Mechanical
Force

Magneto 1

Mechanical
Force

Magneto 2

6.2 Fault Tree Synthesis

The last step is generating the FT. A component can
spontaneously be subject to a fault event, creating an
“internal failure” BE for each component. An OR gate is
generated, and the “internal fault” BE is added as a child
to this. Recall from Section 5.2 that a component may fail
if another component that it functionally depends on
fails. Whether or not it depends on the availability of a
third component to supply that same resource. For any
component c2 in the functional dependency graph, find
all outgoing edges. For each of these edges, determine if
it is in a redundancy structure with c2 for each of its
corresponding resources ri. If so, generate an AND gate
between the OR gate labeled c2 and all other components
in that redundancy structure for ri. Lastly, generate an
additional OR gate, a child of the OR gate labeled c2, for
each of the components that c2 is functionally dependent
on, but are not in a redundancy structure with c2.
Applying this methodology to the example results in an
FT (Figure 6).

Figure 6 – Synthesized FT for Lycoming O-320 engine. In
yellow, the intermediate events that correspond to component

failures. In green, the BEs for internal fault events.

7 CONCLUDING REMARKS

We have shown how meaningful fault trees can be
synthesized under a small set of knowledge assumptions.
This enables qualitative fault tree analysis methods to be
applied over a KG that contains no explicit fault
information. The liveliness assumption simplifies this

synthesis process. However, the FTs may suggest
potential failure modes that do not exist in the actual
CPS’s operational modes. Future work could investigate
whether incorporating system state and time information
in the methodology may address this issue, potentially at
the cost of requiring more explicit system knowledge in
the KG. Furthermore, the inference of redundancy
structures may over-approximate the robustness of a
system. Our proposed methodology does not distinguish
a redundancy structure from a component that requires
an identical resource from two distinct sources. Future
work may extend the ontology with an explicit
redundancy concept. Lastly, we hypothesize that it is
possible to match subsets of SysML and Arcadia models
to our proposed ontology, making our methodology
available to existing system models.

ACKNOWLEDGEMENT

This publication is part of the project
ZORRO with project number
KICH1.ST02.21.003 of the research
programme Key Enabling Technologies
(KIC) which is (partly) financed by the
Dutch Research Council (NWO).

REFERENCES

1. R. Baheti and H. Gill, “Cyber-physical systems,” The
impact of control technology, 2011.

2. K. Henderson and A. Salado, “Value and benefits of
model-based systems engineering (MBSE): Evidence
from the literature,” Systems Engineering, 2021.

3. M. Hause et al., “The SysML modelling language,”
Fifteenth European systems eng. conf., 2006.

4. S. Friedenthal, A. Moore, and R. Steiner, A practical guide
to SysML: the systems modeling language, Morgan
Kaufmann, 2014.

5. S. Bonnet, J.-L. Voirin, D. Exertier, and V. Normand,
“Not (strictly) relying on SysML for MBSE: Language,
tooling and development perspectives: The
Arcadia/Capella rationale,” SysCon, 2016.

6. D. H. Stamatis, Failure mode and effect analysis: FMEA
from theory to execution, Quality Press, 2003.

7. M. Signor, “The failure-analysis matrix: a kinder, gentler
alternative to FMEA for information systems,” Proc. Ann.
Reliability & Maintainability Symp., 2002.

8. T. Montgomery, D. Pugh, S. Leedham, and S. Twitchett,
“FMEA automation for the complete design process,”
Proc. Ann. Reliability & Maintainability Symp., 1996.

9. C. Spreafico, D. Russo, and C. Rizzi, “A state-of-the-art
review of FMEA/FMECA including patents,” Computer
Science Review, 2017.

10. E. Ruijters and M. Stoelinga, “Fault tree analysis: A
survey of the state-of-the-art in modeling, analysis and
tools,” Computer science review, 2015.

Magneto 1
Internal

AND

Magneto 1
Fails to Produce

Electricity

Cylinder 1
Fails to Do Work

Spark Plug 1
(Top)

Internal

Spark Plug 1
(Top)

Fails to Produce Spark

OR

OR

Cylinder 1
Fails to Do Work

OR

Cylinder 1
Internal

Magneto 2
Internal

Magneto 2
Fails to Produce

Electricity

Cylinder 1
Fails to Do Work

Spark Plug 1
(Bottom)
Internal

Spark Plug 1
(Bottom)

Fails to Produce Spark

OR

OR

OR

Lycoming OH-320
Fails

11. Overhaul Manual Direct Drive Engine, Williamsport,
Pennsylvania, Textron Lycoming, 1974.

12. O-320 Series Operator’s Manual, Williamsport,
Pennsylvania, Lycoming, 2006.

13. F. Mhenni, N. Nguyen, and J.-Y. Choley, “Automatic
fault tree generation from SysML system models,”
International Conference on Advanced Intelligent
Mechatronics, 2014.

14. M. Bozzano, A. Cimatti, J. Katoen, V. Y. Nguyen, T. Noll,
and M. Roveri, “Safety, dependability and performance
analysis of extended AADL models,” Comput. J., 2011.

15. Y. Papadopoulos and J. A. McDermid, “Hierarchically
performed hazard origin and propagation studies,”
Computer Safety, Reliability and Security, 1999.

16. X. Meng, B. Jing, S. Wang, J. Pan, Y. Huang, and X. Jiao,
“Fault knowledge graph construction and platform
development for aircraft PHM,” Sensors, 2024.

17. L. Shen, H. Tang, L. Wang, J. Cai, and X. Cui, “A fault
knowledge graph creation method and application based
on fault tree analysis and failure mode, effects and
criticality analysis,” ICIBA, 2023.

18. L. Ehrlinger and W. Wöß, “Towards a definition of
knowledge graphs,” SEMANTICS, 2016.

19. D. Vrandečić and M. Krötzsch, “Wikidata: a free
collaborative knowledgebase,” Commun. ACM, 2014.

20. M. Stamatelatos, W. Vesely, J. Dugan, J. Fragola, J.
Minarick, and J. Railsback, Fault tree handbook with
aerospace applications, NASA, 2002.

21. IEC 61025 Technical Committee et al., Fault tree analysis
(FTA), IEC Standards Online, 2006.

22. J. A. Estefan et al., “Survey of model-based systems
engineering (MBSE) methodologies,” Incose MBSE
Focus Group, 2007.

23. A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr,
“Basic concepts and taxonomy of dependable and secure
computing,” IEEE Transactions on Dependable and
Secure Computing, 2004.

24. S. Harris and A. Seaborne, SPARQL 1.1 Query Language,
W3C, 2013.

25. J. Pérez, M. Arenas, and C. Gutierrez, “Semantics and
complexity of SPARQL,” The Semantic Web ISWC, 2006.

