
Crossover: Towards Compiler-Enabled COBOL-C
Interoperability

Mart van Assen
mart@vanassen.info

Computer Science, University of Twente
Enschede, The Netherlands

Manzi Aimé Ntagengerwa
m.a.ntagengerwa@gmail.com

Computer Science, University of Twente
Enschede, The Netherlands

Ömer Faruk Sayilir
o.f.sayilir@student.utwente.nl

Computer Science, University of Twente
Enschede, The Netherlands

Vadim Zaytsev
vadim@grammarware.net

Formal Methods & Tools, University of Twente
Enschede, The Netherlands

Abstract
Interoperability across software languages is an important
practical topic. In this paper, we take a deep dive into inves-
tigating and tackling the challenges involved with achieving
interoperability between C and BabyCobol. The latter is
a domain-specific language condensing challenges found
in compiling legacy languages — borrowing directly from
COBOL’s data philosophy. Crossover, a compiler designed
specifically to showcase the interoperability, exposes details
of connecting a COBOL-like language with PICTURE clauses
and re-entrant procedures, to C with primitive types and
struct composites. Crossover features a C library for over-
coming the differences between the data representations
native to the respective languages. We illustrate the design
process of Crossover and demonstrate its usage to provide
a strategy to achieve interoperability between legacy and
modern languages. The described process is aimed to be a
blueprint for achievable interoperability between full-fledged
COBOL and modern C-like programming languages.

CCS Concepts: • Software and its engineering→ Inter-
operability; Maintaining software.

Keywords: legacy languages, integration, compilation

ACM Reference Format:
Mart van Assen, Manzi Aimé Ntagengerwa, Ömer Faruk Sayilir,
and Vadim Zaytsev. 2023. Crossover: Towards Compiler-Enabled

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
GPCE ’23, October 22–23, 2023, Cascais, Portugal
© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0406-2/23/10. . . $15.00
https://doi.org/10.1145/3624007.3624055

COBOL-C Interoperability. In Proceedings of the 22nd ACM SIG-
PLAN International Conference on Generative Programming: Con-
cepts and Experiences (GPCE ’23), October 22–23, 2023, Cascais, Por-
tugal. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/
3624007.3624055

1 Introduction
Many organisations from the public and private sectors rely
on legacy software systems written in the last century for
their critical day-to-day operations: 43% of all banking sys-
tems are built on COBOL [11], 44 out of top 50 banks [24]
and 92 out of top 100 [4] use mainframes. 71% of Fortune 500
companies are relying on legacy systems [4]. Themost promi-
nent legacy languages in the 2020s are COBOL (42%), HLASM
(37%), PL/I (22%) and various Fourth Generation Languages,
or 4GLs (22%–32%) [16]. Among mainframe-using compa-
nies, 75% are concerned about having access to the right IT
talent to maintain and manage their mainframes [16].
A major part of the challenge of understanding, main-

taining and renovating software written in legacy lan-
guages, is related to the different data philosophy adapted by
them [2, 38, 39]. Mainframe languages normalise mixing the
form and the representation, leading developers into writing
code that relies on knowing precise byte sizes of data and op-
erating with ad hoc data structures with constraints varying
per byte and reuse provided by lexically reimporting data
definitions. Modern languages tend towards separation of
concerns, leading developers to define reusable types encap-
sulating and hiding exact implementation details.
In this paper, we introduce Crossover: a compiler that

bridges the gap between COBOL’s and C’s data philosophies.
Since real legacy programming languages such as COBOL,
FORTRAN or PL/I are too large to implement in a similar
way as a proof-of-concept [22], Crossover showcases our
strategy for language interoperability on BabyCobol [45]
(see Section 2.1). This programming language is meant to be
quickly implementable and yet still offer many of the chal-
lenges that arise from processing legacy languages, the same
way Featherweight Java is used for experimental features in
language semantics instead of Java.

72

https://orcid.org/0009-0006-9571-7371
https://orcid.org/0009-0008-4414-1979
https://orcid.org/0009-0009-8860-2316
https://orcid.org/0000-0001-7764-4224
https://doi.org/10.1145/3624007.3624055
https://doi.org/10.1145/3624007.3624055
https://doi.org/10.1145/3624007.3624055

GPCE ’23, October 22–23, 2023, Cascais, Portugal van Assen, Ntagengerwa, Sayilir, and Zaytsev

Crossover allows for the calling of procedures between
BabyCobol and C. Since these languages have vastly differ-
ent ways of representing data, marshalling of parameters
and return values is necessary. To account for this differ-
ence in data representation, we designed the “BabyCobol
standard library” (BSTD); a shared C library used by the com-
piler for data representation, marshalling and manipulation
during runtime. By also making this library available to the
programmer we bring some BabyCobol semantics to C.

To illustrate the impact of the compiler, the following code
snippet shows how BabyCobol could use a function call to a
C program to calculate the value of the seventh Fibonacci
number. First, the variables N and RESULT are defined in
the DATA DIVISION (the part of the COBOL program con-
taining data definitions). In the PROCEDURE DIVISION (the
code-containing part), the value of N gets set to 7. Then the
CALL statement calls the function "fib" of a C program called
"fibonacci" and passes N as an argument to indicate the N-
th Fibonacci number must be calculated. When reentering
BabyCobol, the return value of the C function is parsed into
the RESULT variable. The BabyCobol program then displays
the result and terminates.

1 IDENTIFICATION DIVISION.

2 PROGRAM-ID. FIB.

3 DATA DIVISION.

4 01 WORKING-STORAGE-AREA.

5 02 N PICTURE IS 99.

6 02 RESULT PICTURE IS 9999999999.

7 PROCEDURE DIVISION.

8 MOVE 7 TO N.

9 DISPLAY "Calculating the " N "-th Fibonacci

number: "

10 CALL fib OF fibonacci

11 USING BY VALUE N AS PRIMITIVE

12 RETURNING RESULT.

13 DISPLAY RESULT.

14 STOP.

Listing 1. Calculating the 7th Fibonacci number by calling
a C function

Crossover is created using the readily available com-
piler construction tools ANTLR [28] (a parser generator)
and the LLVM Core libraries [21]. At runtime, it also re-
quires the Clang compiler to be installed on the system.
Complete engineering details about dependencies and in-
stallation requirements can be found in the project reposi-
tory [33]. Crossover currently implements a subset of the
BabyCobol language [45]. Its novel features include:

• The instantiation and modification of BabyCobol data
types in C code.

• The invocation of C functions from a BabyCobol code-
base, and the invocation of BabyCobol paragraphs
from C.

• The automatic generation of C composite structs from
BabyCobol data definitions.

Systems similar to Crossover have been created be-
fore, as we will see in the next section. However, all of
them are tightly integrated parts of proprietary frameworks.
Crossover is meant to be open source, it is focused primarily
on solving the interoperability problem, and it has a palat-
able size, suitable for use as an example both in an industrial
context of developing similar bridges between languages, as
well as for code reading in software evolution education. Fur-
thermore, Crossover is designed to support programmers
by abstracting away the dichotomy of data representation
between BabyCobol and C.
The paper is structured as follows: Section 2 dives into

the background and related work. In Section 3 we formulate
the problem statement and pose a number of research ques-
tions, to which Section 4 proposes a solution. In Section 5
we describe the evaluation of the proposed solution. Finally,
Section 7 discusses the strategy we used, concludes the paper
and proposes future work directions.

2 Background
We focus on COBOL as our subject for investigating a legacy
data philosophy, since it is one of the largest and by far the
most used legacy programming language nowadays [16]. For
practical reasons, we substitute COBOLwith BabyCobol [45]
which is significantly smaller yet following an identical data
philosophy.
The choice for modern data philosophy falls on C [17].

The motivation is based on C being an immensely popu-
lar language itself, as well as a solid representative for the
class of C-like languages which are prevalent in the software
engineering practise today.

2.1 BabyCobol
BabyCobol, also known as “the software language engineers’
worst nightmare” [45], is an experimental language specifi-
cally designed with an intention to highlight challenges of
implementing legacy languages. It has a tiny size (1 data
type and 18 statements), paling in comparison to real legacy
languages like COBOL (43 statements and 87 functions, most
statements being split into up to 8 variants) [14] or IBM’s
mainframe assembly language HLASM (3296 directives, in-
structions and mnemonics) [3, 44], which makes its imple-
mentations compact and focused. Yet, it is uncomfortable and
perpetually challenging: for example, it combines Fortran-
style computable GO TOs (where the name of the target label
is a result of a runtime computation) with the COBOL ability
to ALTER them (reassign an existing control flow transferring
statement to another target at runtime), REXX-like error han-
dling with SIGNAL (comparable to aspect weaving [19]) and
non-reserved keywords inspired by PL/I (where variables
are allowed to have names identical to keywords).

BabyCobol was meant as a playground for experimenting
with various techniques of compilation, software analysis

73

Crossover: Towards Compiler-Enabled COBOL-C Interoperability GPCE ’23, October 22–23, 2023, Cascais, Portugal

and transformation, both for educational purposes and in
the research context. Thus, instead of investing years [22]
into building a parser for some extensive legacy language,
and then a compiler covering all variations and subclauses of
one of its dialects, we have built a minimal implementation
of the language core and extended it with one new CALL
statement (for calling external programs written in C or
BabyCobol) and one subclause of the PROCEDURE DIVISION
(for specifying return values of the program).

BabyCobol’s data philosophy is a strict subset of that of
COBOL. The language offers only one primitive type of data:
the PICTURE. A field (variable) refers to a single piece of in-
formation of a fixed size. Fields are defined by a template,
determining how the system interprets the data stored in
them. For example, a field can be defined with the template
"XX99", which specifies that it is four bytes long and may con-
tain two alpha-numeric characters followed by two decimal
digits. The exact semantics will be explored in Section 2.5.
Similarly to COBOL, each BabyCobol program con-

sists of divisions. In BabyCobol there are three divisions:
the IDENTIFICATION DIVISION, DATA DIVISION and the
PROCEDURE DIVISION.
The IDENTIFICATION DIVISION is mandatory for each

BabyCobol program and contains identifying information of
the file. This division is made up of name-value pairs andmay
contain clauses like PROGRAM-ID, AUTHOR, DATE-WRITTEN
and DATE-COMPILED, which are typically found in real
COBOL programs. In BabyCobol, programmers are not lim-
ited by predefined clauses and can extend this division with
their own keys. An IDENTIFICATION DIVISION is always
the first division in a (Baby)Cobol program.
All explicitly defined variables in a BabyCobol program

are declared in the DATA DIVISION. This division is optional:
in case of is absence, the program is restricted to the use of
constants and implicitly typed variables. If present, the DATA
DIVISION is found after the IDENTIFICATION DIVISION and
above the PROCEDURE DIVISION. Data structures in Baby-
Cobol are hierarchical, such that fields can be declared at
the top-level or as part of a record. A record is a composite
data structure which may contain fields and/or other records.
Records and fields can also be turned into arrays with the
OCCURS clause and a number representing the desired fixed
length. In COBOL, DATA DIVISIONs are split into sections,
but this is abstracted from in BabyCobol.

The PROCEDURE DIVISION follows the other divisions, and
is the last division in a BabyCobol program. It consists of
paragraphs, which are comparable to functions in C. How-
ever, unlike C, BabyCobol executes statements sequentially
from the start of the division, fall through from the end of one
paragraph directly to the start of the next paragraph below it
until the end of the file or a STOP statement is encountered.

In Table 1 we align the terminology to describe elements
and concepts of both BabyCobol and C.

2.2 Foreign Function Interface
Foreign function interfaces (FFIs) are mechanisms that allow
one host language to invoke procedures written in another
guest language, using the call semantics of the host language.
An FFI bridges the differences in calling conventions and
semantics between the two languages. Many modern lan-
guages and industrially strong compilers provide FFIs (we
will give some examples in Section 6), and there exist libraries
like libffi [9] which facilitate developers in making their
own FFI. Since FFIs make it possible to seamlessly integrate
differently typed code, their generalisation can be classified
as a form of gradual typing [5, 37]. Practical implementations
are often substantially simpler since legacy languages offer
only very basic non-parametric forms of polymorphism, if
any at all.

2.3 Application Binary Interface
An Application Binary Interface (ABI) is a specification
which defines object and executable file formats, as well
as calling conventions between applications and the plat-
form on which they run. By specifying how compilation
units should be linked together, ABIs play a crucial role in
FFIs. The source files for the host and guest language are of-
ten processed by different compilers. Linking together these
compilation units requires them to adhere to the same ABI.
Additionally, at runtime the parameters and return values
of procedures must follow the same memory/register layout
defined in the ABI. The data types of the passed parameters
are not defined in the ABI, and bridging them requires spe-
cific steps in the case of BabyCobol and C. We discuss this
further in Section 2.5, and expand upon this in Section 4.2.
The Crossover compiler targets the UNIX System V

ABI specification [43], which came about in 1998 and went
through several minor backward-compatible changes until
2013. It consists of two parts; a generic part (gABI), which
is the same for all implementations of System V, and a
processor-specific supplement (psABI). The System V ABI
comprises the Executable and Linking Format (ELF) [36],
which defines the format of object files and how these are
linked together to form executable files.

Because ABIs work at a very low level of abstraction, and
there exist many different computing platforms [12], writing
an application for any specific ABI greatly limits its portabil-
ity. However, since Crossover is an LLVM-based compiler,
it does have a certain degree of portability by construction.
Crossover is designed to link ELF objects in its compilation
pipeline. Because the ELF format is part of the generic System
V ABI (gABI), and LLVM has backends for multiple proces-
sor architectures (psABIs), the compiler can target multiple
System V-derived platforms (notably modern Linux).

74

GPCE ’23, October 22–23, 2023, Cascais, Portugal van Assen, Ntagengerwa, Sayilir, and Zaytsev

Table 1. Terminology across language domains

Term BabyCobol C
variable field or record any non-constant of a basic data type or struct

string a field containing alphabetic or alphanumeric data a C-style string (char*)

number a field containing numeric data char, int, long, float, double
(with a PICTURE clause containing only {9,S,Z,V}) (any modifications)

procedure a paragraph a function

2.4 Standard Libraries and Language Runtimes
A standard library [10] can contain language functionality
not directly built into the language as a native construct.
Functionality from standard libraries can either be expanded
into the source code as a macro, or they can be compiled in
their entirety and linked with the program binary.
A language runtime [42] is a compiler component that

needs to be present during the execution of a compiled pro-
gram written in the language for the executable to function
properly. A language runtime could take the form of one or
more standard libraries or a virtual machine.
The BabyCobol standard library (Section 4.2) is a central

component of our solution and is a hybrid between a stan-
dard library and a language runtime.

2.5 BabyCobol vs. C
There are many differences between BabyCobol and C, since
they represent different schools of thought and directions of
programming language evolution. But despite obvious syn-
tactical differences, there are some similarities to be found.
For example, both are compiled imperative languages. They
are procedural, thus allowing for the definition of reusable
paragraph or function blocks. In BabyCobol, these proce-
dures may have a certain degree of isolation from the main
scope of the program, up to being solely dependent on the
procedure parameters passed to it by a caller. Similarly, C
functions may be solely dependent on their function param-
eters.
There is no functional purity in either language, but be-

sides minor side effects on the global state, we can identify a
class of isolated procedures. Such isolated procedures may
still have side effects in a system through file or database ac-
cess, but from a functional perspective they are idempotent.
These characteristics offer a good starting point in de-

veloping interoperability between the two languages. All
parameters we send over an FFI when invoking a procedure
must be available on the other side. If the invoked procedure
returns a result, that must be sent back over the FFI and be
available on the invoking side.

In BabyCobol and C, we have different ways of represent-
ing data. We refer to the representation of data, and the con-
straints on that representation, as its data type. BabyCobol

only has one inclusive data type constrained by a PICTURE
clause. Essentially it gives a pattern to which the possible
values have to conform, where each symbol mandates the
contents of one letter or digit. Patterns are constructed freely
(with some minor variations of what combinations trigger
a warning or an error, which varies wildly across COBOL
dialects — BabyCobol allows any combination to simplify
this issue), but there are some that are more useful and thus
more commonly used. For example, S99means a signed two-
digit numeric value, 999V99 defines a fixed point decimal
with five digits, two of which define the hundredths and the
others the integer part, and XXXXX allows any five-character
string.
COBOL has some more complex rules for representing

enumerations and redefining the same memory area with
alternative representations, but BabyCobol only has two
kinds of data entries: a primitive one (a field defined with a
PICTURE clause as explained above) and a composite one (a
record that combines several fields or other records). Either of
those can be occurring, essentially turning them into arrays.
In the absence of the REDEFINES and FILLER clauses, all data
structures are fairly straightforward and can be represented
by a tree structure.

2.5.1 Fields and Basic Data Types. C is similar to
(Baby)COBOL in the sense of having byte representation
aware types, but it comes with predefined basic data types
such as int which directly represent data in memory, and has
structs which aggregate such basic data types and other
structs. Unlike BabyCobol, structs in C are named and
reusable by those names. The most significant dissonance in
data representation may occur at the level of fields in Baby-
Cobol and basic data types in C. In BabyCobol, fields are
position-based, which used to align better with its business-
oriented nature and punchcard-oriented implementation.
For instance, we may define a field to consist of three deci-
mal digits. This allows for an intuitive description of what
data a field holds. The programmer does not need to be con-
cerned with the bit-width of their data type, nor with the
intricate concepts of floating-point numbers and rounding
errors. BabyCobol’s fixed-point numbers are incompatible
with C’s floating-point data types.

75

Crossover: Towards Compiler-Enabled COBOL-C Interoperability GPCE ’23, October 22–23, 2023, Cascais, Portugal

In C, we find that each basic data type represents only a
single type of data. In contrast with BabyCobol, C does not
let the programmer define a type per character. Instead, its
basic data types describe a region in memory with a certain
bit-width. Where BabyCobol can distinguish several data
types in one Field by specifying the type of each individual
character, C’s basic data types treat the specified region in
memory as one homogeneous data type. There are some
obvious “easy” cases such as S99 from the example above that
are representable as signed char in C (with some additional
machinery for decimal overflows), but the general case is
complicated and has no universal performant solution.

2.5.2 Records and Structs. Looking at composite data
types, BabyCobol records have much in common with C
structs. They can define a type by the composition of other
types. This composition can, in BabyCobol, always be mod-
elled as a tree, where a field is always a leaf vertex. In C, a
struct may contain a reference to any declared type, even its
own type. Modelling structs as graphs, we can form trees in
C, much like in BabyCobol, but we may also create graphs
containing loops. Therefore, we can not model all C structs
as BabyCobol records. For interoperability to work, we must
find a set of composite data structures that work in both
languages. For BabyCobol, the set of possible composite data
structures 𝑆𝑏 is restricted by ∀𝑑 ∈ 𝑆𝑏 .isTree(𝑑). The set of
possible composite data structures in C 𝑆𝑐 is only "restricted"
to graphs: ∀𝑑 ∈ 𝑆𝑐 .isGraph(𝑑). It follows that 𝑆𝑏 ⊂ 𝑆𝑐 . There-
fore, we can achieve interoperability for a parameter 𝑝 over
our FFI iff 𝑝 ∈ 𝑆𝑏 :
A data structure is valid under the FFI if and only if it can

be modelled as a tree.
All BabyCobol records are valid under this assumption,

but not all C structs are.
One thing that should be noted is that BabyCobol records

do not define a named type but a variable of a certain anony-
mous structure. In this sense, they are similar to unnamed
structures in C. The type of a record can however be used to
define another variable of the same structure through LIKE
clauses. One crucial role of data types in strongly-typed
languages such as BabyCobol and C is for the compiler to
determine what operations are allowed on certain data. For
example, in COBOL and BabyCobol, it is not allowed to add
two strings together (see Section 4.5). A C compiler may
provide warnings or fail on specific implicit (automatic) type
conversions.

3 Problem Statement
From the related work and background we identify certain
challenges which must be overcome to achieve interoper-
ability between BabyCobol and C.

Functions need to be linked across compilation units. The
challenge is matching symbols and implementing call seman-
tics at the ABI level.

BabyCobol’s PERFORM statement does not have the linguis-
tic means to invoke procedures in other compilation units.
It lacks the possibility of specifying arguments and return
values. Furthermore, the BabyCobol language must be ex-
tended in order to support the different parameter forms that
are possible in C function definitions.
Data type constraints and data integrity between Baby-

Cobol and C must be aligned and respected across the bound-
aries of the FFI. This requires the marshalling of variables
when crossing the bridge between the two languages.

To achieve interoperability, there must be mechanisms
provided for the reliable manipulation and evaluation of
data beyond the language boundary, consistent with unified
semantics.

We pose the following research questions:

1. How can a Foreign Function Interface between
BabyCobol and C be implemented?

2. How can the key differences in data philosophy
between BabyCobol and C be addressed?

4 Design and Implementation
Crossover is a BabyCobol implementation that is designed
specifically with interoperability between BabyCobol and C
in mind. Alongside BabyCobol source files, users can pro-
vide compiled C object files to the compiler, providing the
procedures they wish to invoke in BabyCobol.
As mentioned, C and BabyCobol vary greatly in how

they handle data. Crossover’s BSTD runtime library helps to
bridge the gap between the two languages. The library con-
tains a C implementation of the native BabyCobol data types
and has the functionality to create, convert to and -from, and
modify variables of these data types. The BSTD library plays
a central role in this implementation: it is used not only for
achieving the interface with C but is also extensively used
for compiling pure BabyCobol programs. The compiler uses
the interface with C to generate calls to the library whenever
data needs to be created or modified, making this library
effectively the language runtime. The design of the BSTD is
discussed further in Section 4.2.
Besides the BSTD, the compiler also provides the option

to automatically generate C headers from BabyCobol identi-
fication divisions. These files allow the user to synchronise
data structures between the two languages.
The implementation relies heavily on two existing com-

piler construction tools: ANTLR [28] and LLVM [21]. ANTLR
is used for generating a parser and a parse tree visitor from
the provided BabyCobol grammar definition, and LLVM is
used as a backend for code generation. The compiler is writ-
ten in C++. This language was chosen due to it being the
native language of the LLVM compiler backend, ANTLR al-
lowing for the generation of parsers in this language, and it
being interoperable with C code, allowing us to incorporate
parts of the BSTD library into the compiler.

76

GPCE ’23, October 22–23, 2023, Cascais, Portugal van Assen, Ntagengerwa, Sayilir, and Zaytsev

4.1 Toolchain Overview

OBJ

BSTD

OBJ

BC Compiler

BabyCobol

C Compiler

Uses
C

Executable

Use
s

Figure 1. Crossover Compilation Overview

Figure 1 visualises the compilation of a mixed Baby-
Cobol/C codebase using Crossover. During the compilation
of a BabyCobol program, a parse tree is generated by ANTLR.
When visiting a node of that parse tree, LLVM is used to
generate the appropriate instructions for that node. We lever-
age the fact that calls to external procedures get resolved
during linking to create the FFI. This approach is also used to
generate calls to the BSTD library for the runtime creation,
conversion and modification of BabyCobol variables. This
eliminates the need of having to implement this functionality
again on a compiler level and guarantees that operations on
BSTD data types from C code behave exactly the same as
they do in native BabyCobol. When the compilation of the
BabyCobol sources is done, the compiler invokes clang to
link the newly created object files, the BSTD runtime library,
and the C object files into an executable.

4.2 BabyCobol Standard Library: BSTD
The BSTD is the core of our approach to interoperability. Its
key responsibility is resolving the differences between fields
in BabyCobol and basic data types in C. It can also guarantee
data integrity by allowing for the use of the same operation
semantics on its data types in both BabyCobol and C (see
Section 4.5). BabyCobol has only one data type — the Field.
The BSTD contains two data types: the Number, defined in
Table 2, and the Picture, shown in Table 3. The reason for
this distinction is that certain operations are exclusive to
BabyCobol Fields which represent numbers. Specialising a
data type for Numbers and everything else allows for type
checking at compile time whether an operation may be per-
formed on the operands’ data types. It also allows for a more
specialised representation of data, simplifying its modifica-
tion.
The fields in Table 2 and 3 are not packed. The C lan-

guage specification [17] dictates that the size of Numbers
and Pictures must both be 24 bytes due to inserted padding.
This padding is inserted at the end of the structs and does
not affect the offsets shown in Table 2 and Table 3.

The values stored in the BSTD data types create a com-
plete representation of their PICTURE clause specification in
BabyCobol.
The BSTD Picture contains an array of bytes, a mask

character array and a length. The length property describes
the dimensions of the mask- and byte array. For any Picture
𝑝 with byte array 𝐵𝑝 , mask𝑀𝑝 and length 𝑙 , the lengths of
these arrays are equal: 𝑙 = |𝐵𝑝 | = |𝑀𝑝 |.

Masks are character based, and the 𝑖𝑡ℎ mask character ap-
plies to the 𝑖𝑡ℎ byte. A masking function𝑚𝑎𝑠𝑘 (𝑏𝑦𝑡𝑒,𝑚𝑎𝑠𝑘)
creates an interpretation of a byte given its correspond-
ing mask character, such that for a Picture 𝑝 value
𝑣𝑖𝑝 = 𝑚𝑎𝑠𝑘 (𝐵𝑖𝑝 , 𝑀𝑖

𝑝). For example, 𝑚𝑎𝑠𝑘 (0, 9) = 0 and
𝑚𝑎𝑠𝑘 (65, 𝑋) = 𝐴. Truncating may occur for values outside
the permitted range for a mask character;𝑚𝑎𝑠𝑘 (65, 9) = 5.
The BSTD Picture data type can be converted to a C-

style string by iterating over each byte-mask character pair
and mapping it to a character using the𝑚𝑎𝑠𝑘 function.

The BSTD Number data type stores a base value, a scale
and the isSigned property. Additionally, it stores the per-
mitted length of the Number and the positive property.
The data type can represent integer and fixed-point deci-
mal values. Converting these data types to C integers or
floating point numbers is done at runtime. The conversion
function for any Number 𝑛 with base value 𝑏 and scale 𝑠 , is
𝑣 (𝑛) = 𝑠𝑖𝑔𝑛(𝑛) · 𝑏 · 10−𝑠 , where 𝑠𝑖𝑔𝑛 : Number → {−1, 1}.

Conversely, C basic data types can not trivially be con-
verted to BSTD Numbers because they lack the constraining
properties inherent to the Number type. Through this lack of
information, we are restricted to the assignment of C basic
data types to instances of BSTD Numbers which contain the
otherwise missing constraints. This forces the programmer
to be explicit in defining these constraints.
C integers are assigned to Numbers using the following

formula: 𝑏 =

(
|𝑘 | −

⌊
|𝑘 |

10𝑙−𝑠

⌋
· 10𝑙−𝑠

)
·10𝑠 , where an integer 𝑘

is assigned to a Numberwith the base value of 𝑏, length 𝑙 , and
scale 𝑠 . Additionally, we set the positive property of the
Number such that 𝑠𝑖𝑔𝑛(𝑛) = −1 ⇐⇒ 𝑖𝑠𝑆𝑖𝑔𝑛𝑒𝑑 (𝑛) ∧ 𝑘 < 0.
Note that assigning a C data type does not affect any of the
other properties of the Number.
BSTD Numbers are representations of integer or fixed-

point decimal numbers. They are equivalent to BabyCobol
Fields with a PICTURE clause consisting of the characters 9,
S, Z and V. With the set of characters 𝑁 = {9, 𝑆, 𝑍,𝑉 }, for
any mask𝑀 , isNumberMask(𝑀) ⇐⇒ ∀𝑐 ∈ 𝑀.[𝑐 ∈ 𝑁].
Because Number data structures are distinct types from

Picture data structures, we do not need to specify a mask
whenwe construct one— all mask characters are in𝑁 and are
represented in the Number data structure and their semantics
are fully encapsulated in the struct.

77

Crossover: Towards Compiler-Enabled COBOL-C Interoperability GPCE ’23, October 22–23, 2023, Cascais, Portugal

Table 2. The Number Data Structure

Offset Size Field Description
0x00 8 bytes value The base value of the Number.

0x08 8 bytes scale The scale of the Number.

0x10 1 byte length The length of the Number.

0x11 1 byte isSigned Set if the Number is signed,
unset if not.

0x12 1 byte isPositive Set if the Number is positive.
-0 and +0 are treated the same.

Table 3. The Picture Data Structure

Offset Size Field Description

0x00 8 bytes bytes A pointer to the bytes array
belonging to this Picture.

0x08 8 bytes mask A pointer to the Picture clause
specification string.

0x10 1 byte length The length of the Picture.

Similarly, the Crossover compiler will represent any
BabyCobol field with a PICTURE clause containing non-
number mask characters by a Picture data type. For any
field with mask 𝑀 , isPictureMask(𝑀) ⇐⇒ ∃𝑐 ∈ 𝑀.[𝑐 ∉

𝑁] ⇐⇒ ¬isNumberMask(𝑀). Circling back, Numbers are
numbers, and Pictures are everything else.

4.3 Linking
We compile both C and BabyCobol code to ELF object files.
After compilation, we will have lost many details about the
original implementation language of the particular object
file. Both Crossover and clang do not do name mangling
and list functions as symbols by their name. We link these
object files without any knowledge of their implementation
languages, and thus we can use clang to opaquely create an
executable binary including originally both C and BabyCobol
functions. This step can be extended to any language which
compiles to an ELF object file (see Section 4.6).

During the compilation of BabyCobol source files the com-
piler checks if any internally unknown CALL target proce-
dure exists in the externally compiled object files. This is
done by using the nm tool from the GNU Binutils package [7]
to read the symbols in the object files. The nm output is then
parsed to construct a symbol table of procedure names found
in the external object files.
To link C objects and BabyCobol objects, we must have

compiled them both. This creates a problem: How do we
get the compiler to understand data structures defined in
the other language’s source? It seems to be the setup for a

chicken-and-egg scenario. To compile one, the other must
have already been compiled. To address this, we offer two
tools:

• The BSTD library makes BabyCobol Fields accessible
from C. It exposes a struct-representation of Fields
and utility functions that allow for converting to and
from C basic data types. To a programmer using these
utility functions, the BSTD guarantees that BabyCobol
semantics apply to all operations performed on such
data types. More on this in Section 4.2.

• There is an integrated tool which parses BabyCobol
source files and extracts their defined data structures
from their DATA DIVISIONs. It then outputs these data
structures as C structs in a header file. This header
file can be included in C source code and used like any
other struct. We can then build and compile against
the BabyCobol source code using these data types.

4.4 Language Extensions
We introduce four optional modifiers as extensions to the
BabyCobol specification, which allow for more fine-grained
control over the way in which parameters are passed over
the FFI:

• BY VALUE specifies that the parameter must be copied
before being passed over the FFI. Changes made to the
copy do not change the original data structure.

• BY REFERENCE specifies that the parameter must be
passed over the FFI as a reference to that data struc-
ture. The invoked function has direct access to the
parameter, and changes on the other side of the FFI
are reflected in the data structure.

• AS PRIMITIVE specifies that the parameter or return
value must be passed as a C basic data type. We dis-
tinguish three basic data types: the integer, the dou-
ble (floating point), and the character pointer (C-style
string). This modifier may only be applied to Fields.

• AS STRUCT specifies that the parameter or return value
must be passed as a C struct. This is a predefined
BSTD data type for Fields and a generated C struct for
Records.

The programmer can choose to specify one of the leading
modifiers (either BY VALUE or BY REFERENCE) and/or one of
the trailing modifiers (either AS PRIMITIVE or AS STRUCT),
as seen on Figure 2. The BY VALUE and BY REFERENCE mod-
ifiers are applied to all following parameters until a new
modifier is encountered. Conversely, the AS PRIMITIVE and
AS STRUCTmodifiers are applied to all preceding parameters
until a new modifier is encountered. If no optional modifiers
are present the implicit behaviour for Fields is BY VALUE and
AS PRIMITIVE, respectively. For Records, these defaults are
BY VALUE and AS STRUCT, since being an composite data
structure, records cannot be mapped to any C basic data
type.

78

GPCE ’23, October 22–23, 2023, Cascais, Portugal van Assen, Ntagengerwa, Sayilir, and Zaytsev

This BabyCobol language extension allows a programmer
to create calls compatible with almost all possible function
definitions in C. BY VALUE results in a non-pointer param-
eter, whereas BY REFERENCE results in a pointer parameter.
Similarly, AS PRIMITIVE results in a C basic data type and
AS STRUCT in a BSTD data type or struct. The compiler
also ensures the correct marshalling during invocation and
re-entry as shown in Figure 3. At the start of a CALL the Baby-
Cobol data is marshalled to the appropriate format for the
function based on the parameter modifiers. Upon re-entry,
the parameters are marshalled again, as well as the return
value. Parameters passed BY REFERENCE can be modified
on the C side, and variables defined in the BabyCobol DATA
DIVISION must be updated to reflect their new values. In
the case of a BY REFERENCE and AS PRIMITIVE clause, the
marshalled parameter values need to be inversely marshalled
and assigned to their original field. Similarly, return values
may need to be marshalled to be assigned to their target
Field or Record as defined in the DATA DIVISION.

4.5 Data Type Constraints and Data Integrity
Data defined using Crossover obeys the type constraints
that are defined in the BabyCobol specification [45]. This
means that the format of each variable has to abide by its
description defined in the data division of a BabyCobol file.
For instance, if a user tries to MOVE the value 42 to a variable
defined as 9V99, the value of the variable will be set to 2.00.
Likewise, when a variable is defined with the PICTURE clause
AX and the user attempts to MOVE the string "HI!" to the
variable, it will be set to "HI" (Note the missing exclamation
mark).

While BabyCobol does not specify a limit on the number
of characters of a PICTURE clause, our implementation cur-
rently limits the length of a Number to nine digits, and the

CALL
function_name OF

program_name

USING atomic
BY VALUE

BY REFERENCE
AS PRIMITIVE
AS STRUCT

RETURNING identifier
BY VALUE

BY REFERENCE
AS PRIMITIVE
AS STRUCT

Figure 2. The railroad diagram of the CALL statement, in-
cluding extensions

call
(params)

call foo(params)

Marshall(params)

return
(value)

define foo(params)
Marshall(value)

Marshall(params)

Figure 3. Marshalling When Invoking a Foreign Function

length of a Picture to 255. The length of Numbers is limited
because our implementation uses 64-bit integers to store the
properties of the Number struct. The length of a Picture is
also limited due to the usage of an 8-bit integer to store the
length property.

Because the BSTD is used by Crossover itself, using this
library in C guarantees that the implementation of opera-
tions on Numbers and Pictures is one and the same in either
environment. This provides exact BabyCobol data semantics
to C, allowing for safe manipulation of BabyCobol variables
within C programs.

The Crossover compiler will adhere to the invariant ∀𝑧 ∈
𝐹 .[𝑖𝑠𝑁𝑢𝑚𝑏𝑒𝑟 (𝑧) ⇐⇒ 𝑖𝑠𝑁𝑢𝑚𝑏𝑒𝑟𝑀𝑎𝑠𝑘 (𝑀𝑧)], where 𝐹 is
the set of all possible Fields in BabyCobol, and 𝑀𝑧 is the
mask of Field 𝑧. This means that any Field with a numeric
PICTURE clause will be instantiated as a Number data type.

Outside the Crossover compiler, the BSTD does allow for
an instance of the Picture data structure to be created with a
mask𝑀 such that 𝑖𝑠𝑁𝑢𝑚𝑏𝑒𝑟𝑀𝑎𝑠𝑘 (𝑀). This does not have a
negative impact on data integrity, as the type systemwill pre-
vent Pictures from being used where a Number is expected.
Because some operations are exclusive to Numbers, Picture
instances with a mask𝑀 such that 𝑖𝑠𝑁𝑢𝑚𝑏𝑒𝑟𝑀𝑎𝑠𝑘 (𝑀) can-
not be used as parameters to arithmetic functions because
of a mismatch in type.

On re-entry Crossover checks if the passed Picture still
has the same length and mask, as this can never be changed.
Similarly, the length, scale and isSigned properties of a
Number should never be changed and are checked on re-
entry.

4.6 C as a Bridge
The C language is a particularly interesting candidate for a
language to interface with because many other languages
also provide an interface with it. One could use C as an
intermediate language to invoke functionality written in a
third language using a wrapper and calling that wrapper over
the FFI that Crossover provides. This process is illustrated
in Figure 4.

Considering the two data types the BSTD provides, the FFI
can be extended to any language that can interpret the data
structures in Table 2 and 3, and that has a compiler that can
create ELF object files with non-mangled function names as
linkable symbols.

5 Evaluation
In this section, we present the evaluation of our proposed so-
lution, which consists of three parts: unit testing of the BSTD
library, performance analysis of the FFI and the demonstra-
tion of running examples showcasing how the interoperabil-
ity of Crossover can be used.

79

Crossover: Towards Compiler-Enabled COBOL-C Interoperability GPCE ’23, October 22–23, 2023, Cascais, Portugal

Invoke wrapper
function in C

BabyCobol

...
CALL foo_wrapper OF bridge USING
params ... RETURNING ...
...

Return to
C

3rd language

def foo(params) :

...

return ...

Invoke actual function in its
implementation language

bridge.c

int foo_wrapper (params) {

return foo(params);

}

Return to
BabyCobol

Figure 4. Using C as a Bridge

5.1 Testing
To evaluate the stability of our solution, we thoroughly tested
the BSTD library, the central piece of our architecture. This
was done by writing unit tests using the techniques of equiv-
alence class partitioning and boundary value analysis [15].

Equivalence class partitioning is amethod of testingwhere
the inputs of the tested functions are divided into valid and
invalid equivalence classes. Under the assumption that each
member of an equivalence class would be processed in the
same way by the function, one would only need to write one
test per equivalence class. Boundary value analysis expands
upon the idea of equivalence class based testing by introduc-
ing test cases directly on, above or below the boundaries of
equivalence classes. The rationale for these additional test
cases is that bugs usually exist on and around the boundaries
of the equivalence classes.

Table 4 illustrates how equivalence class partitioning was
performed for the function bstd_number_is_integer. This
function was tested by creating cases and creating inputs
combining as many valid equivalence classes as possible.
After these cases, additional cases are added that test the
boundary values. Since behaviour for values outside the valid
bounds is undefined, no test cases exist. Only behaviour
within valid bounds is tested.

These methodologies helped us to validate the BSTD li-
brary and find and fix bugs in our implementation. Some
examples of bugs found during our testing include:

• Mismatched types, for example, when a large int64_t
value is used as an input for a function that takes a
32-bit int causing the int to overflow.

• Insufficient floating-point value precision; while the
default six decimal digits of precision of C is sufficient

Table 4. Equivalence class partitioning for function
bstd_number_is_integer

Condition Valid Invalid

Value of value 0 ≤ value ≤ 999999999 value < 0,
value > 999999999

Value of scale 0 ≤ scale ≤ 9 scale < 0,
scale > 9

Value of length 1 ≤ length ≤ 9 length < 1,
length > 9

Value of isSigned isSigned = true, isSigned = false

Value of positive positive = true, positive = false

Relation
isSigned = true ∧ positive = false,
isSigned = false ∧ positive = true,
isSigned = true ∧ positive = true

isSigned = false ∧
positive = false

to pass most of our BabyCobol Number type to C string
tests, it proved insufficient once we tested the bound-
ary of the number of decimals a BabyCobol Number
could have.

Currently, our test suite consists of 261 tests, covering
87.8% (200/228) of the lines and 91.7% (22/24) of the functions
in the BSTD library. The gaps in the coverage are internal
auxiliary functions that are not exposed for use outside of
the BSTD library.

5.2 Performance Evaluation
In this subsection we evaluate the overhead created by the
different permutations of argument modifiers in the CALL
statement. We created a set of four test programs — one for
each possible permutation. Each program runs a loop of 100
million iterations, calling a C function with an empty body
(to maximise the overhead) with a single argument under
one set of modifiers.We tookmeasurements on the execution
time, the results of which are plotted in Figure 5. To obtain
a statistical mean, each program was run back-to-back 100
times.
Figure 5 shows that the combination of modifiers {BY

REFERENCE, AS PRIMITIVE} takes the longest time to ex-
ecute. This is in line with our expectations, and can be ex-
plained by the fact that when these modifiers are used, the
compiler inserts code for marshalling before the reference of
the argument is passed to the C function. During the re-entry
to BabyCobol the inverse of this happens: the C primitive is
marshalled back into the original BabyCobol variable. This
ensures that changes to the marshalled argument on the
C side are reflected in the original variable. The insertion
of marshalling and unmarshalling code has a performance
overhead of 40% as compared to the fastest running variant
({BY REFERENCE, AS STRUCT}).

With the combination {BY VALUE, AS PRIMITIVE}, the
compiler also inserts code to marshall the argument to a C
primitive. However, with the BY VALUE modifier, changes

80

GPCE ’23, October 22–23, 2023, Cascais, Portugal van Assen, Ntagengerwa, Sayilir, and Zaytsev

Figure 5. Result of the FFI Performance Analysis

to the argument should (and can) not be reflected upon re-
entry. Inserting marshalling code only once implies a lesser
performance overhead of 10%.

The cases {BY VALUE, AS STRUCT} and {BY REFERENCE,
AS STRUCT} are both faster than the previous two cases be-
cause no marshalling is involved. The parameter is passed
to the C function as a copy of or reference to a BSTD struc-
ture respectively, which is its internal representation in
Crossover. There is a slight performance penalty to pass-
ing value copies, it being 2% percent slower than passing
references.

5.3 Demonstration
This subsection features three examples that demonstrate
how the new CALL statement can be used for BabyCobol-C
interoperability.

5.3.1 Calculating a Square Root. The first demonstra-
tion is a simple program that calculates the square root of a
fixed-point number. The BabyCobol code is shown in List-
ing 2. The program defines the variables X and Y as fixed-
point numeric values of two integer digits, and one decimal
digit. In the PROCEDURE DIVISION, X is first assigned the
value 12. Then, the C standard library function sqrt is called,
passing X as the argument. No leading modifier is specified,
so the default BY VALUE semantics apply. The AS PRIMITIVE
modifier dictates that the argument is to be marshalled into
its C basic data type counterpart. The sqrt function in C ac-
cepts a double-precision floating point parameter. It returns
the square root of this parameter. In the CALL statement, the
RETURNING clause specifies that the result of the sqrt func-
tion is a C basic data type which should be marshalled into

the variable Y (respecting Y’s type constraints). Lastly, the
program DISPLAYs the value of Y, which shows 03.4.

1 IDENTIFICATION DIVISION.

2 PROGRAM-ID. "radical".

3 DATA DIVISION

4 01 X PICTURE IS 99V9.

5 01 Y PICTURE IS 99V9.

6 PROCEDURE DIVISION.

7 MOVE 12 TO X.

8 CALL sqrt USING X AS PRIMITIVE

9 RETURNING Y AS PRIMITIVE.

10 DISPLAY "The square root of " X " is " Y.

Listing 2. Calculating a Square Root

5.3.2 Scanner Example. This example shows how a Baby-
Cobol program can use the FFI to accept user input. The code
can be seen in Listing 3. First, a four digit numeric variable
READ is defined in the DATA DIVISION. In the PROCEDURE
DIVISION, the program then asks the user to enter a value
of up to four digits and calls the scanf function from the C
standard library. The scanf function accepts two parameters.
The first is a formatting string, and the second is a character
buffer. We supply the following two arguments:

1. A string literal with the modifier AS PRIMITIVE, spec-
ifying that it is marshalled and passed to scanf as the
C equivalent of a string (char*).

2. The READ variable, marshalled to a char* is the buffer
to which scanf writes. It is passed BY REFERENCE, such
that changes to the parameter are reflected in the Baby-
Cobol variable READ.

Upon re-entry, the contents of this buffer are aligned with
the READ variable’s type specified by its PICTURE clause.
Finally, the program DISPLAYs this value back to the user.

1 IDENTIFICATION DIVISION.

2 PROGRAM-ID. "scanf_demo".

3 DATA DIVISION

4 01 READ PICTURE IS 9999.

5 PROCEDURE DIVISION.

6 DISPLAY "Please enter a number of up to four

digits: ".

7 CALL scanf USING "%4d" AS PRIMITIVE

8 BY REFERENCE READ AS PRIMITIVE.

9 DISPLAY "You entered " READ.

10 END.

Listing 3. Scanner in BabyCobol

5.3.3 Banking Application. The final example, Listing 4
(in BabyCobol) and Listing 5 (in C) illustrate a toy banking
application and API where a certain amount of currency is
withdrawn from a balance. The DATA DIVISION specifies the

81

Crossover: Towards Compiler-Enabled COBOL-C Interoperability GPCE ’23, October 22–23, 2023, Cascais, Portugal

variables BALANCE as a signed fixed point decimal num-
ber, AMOUNT as an unsigned fixed-point decimal number
and SUCCESS as a single digit number. In the PROCEDURE
DIVISION, the two MOVE statements first assign values to
the BALANCE and AMOUNT variables. The CALL statement
invokes the withdraw function of the banking_api with ar-
guments BALANCE and AMOUNT, both AS STRUCT. These
arguments are thus passed as BSTD number struct pointers.
The BALANCE argument is passed BY REFERENCE. This spec-
ifies that changes to the argument in C code are reflected
in the BabyCobol BALANCE variable. In Listing 5, a check
is first done to ensure the withdraw amount is not greater
than the balance. If it is, false is returned and no funds are
withdrawn. If the balance is sufficient, the amount to with-
draw is subtracted from the balance, and true is returned.
Upon re-entry, the return value of the withdraw function is
marshalled and assigned to the variable SUCCESS. A check is
done to either inform the user that the BALANCE was insuf-
ficient, or that the withdrawal was successful, in which case
the new BALANCE is displayed. Note that the BSTD func-
tions used in C allow for data evaluation and manipulation
which implement the exact BabyCobol semantics.

1 IDENTIFICATION DIVISION.

2 PROGRAM-ID. "withdraw".

3 DATA DIVISION

4 01 BALANCE PICTURE IS S99V99.

5 01 AMOUNT PICTURE IS 99V99.

6 01 SUCCESS PICTURE IS 9.

7 PROCEDURE DIVISION.

8 MOVE 42,50 TO BALANCE.

9 MOVE 3,50 TO AMOUNT.

10

11 CALL withdraw OF banking_api USING

12 BY REFERENCE BALANCE

13 BY VALUE AMOUNT AS STRUCT

14 RETURNING SUCCESS AS PRIMITIVE.

15

16 IF SUCCESS = 0 THEN

17 DISPLAY "Your balance (" BALANCE ") is

too low! No funds were withdrawn."

18 ELSE

19 DISPLAY "Withdrawal successful. Your

balance is now " BALANCE

20 END.

Listing 4. BabyCobol banking application

6 Related Work
We have previously mentioned the existence of prior work
on FFIs. For example, CFFI [31] is a foreign function interface
for Python that allows users to call C code. A similar FFI
exists for R and allows for the use of C libraries in R code [1],
and uFFI for Smalltalk, providing C foreign function interface
for Pharo [29]. Some approaches are more formal, such as

1 #include <bstd/numutils.h>

2 #include <bool.h>

3

4 bool withdraw(bstd_number* balance ,

bstd_number amount) {

5

6 if (bstd_greater_than(withdraw , balance))

7 return false;

8

9 bstd_subtract(balance , amount);

10 return true;

11 }

Listing 5. Banking API implementation

MiniML+ [20], for which Larmuseau and Clarke define secure
operational semantics for combining a subset of ML with C.
Others are more practice-driven, like Clasp [34, 35], which
analyses C++ code and generates a Common Lisp interface
with a performant garbage collector to be usedwith an LLVM
backend. Languages like Julia [18] and Rust [32] have built-in
foreign function interfaces which commoditise Fortran, C or
C++ calls. MATLAB also has an extensive family of external
language interfaces [23], allowing bidirectional integration
with Fortran, C, C++, Java, Python and .NET languages.

On the legacy side, both traditional vendors as well as
their competitors provide comprehensive integration func-
tionality. For instance, IBM provides PL/I InterLanguage
Communication (ILC) and Java Native Interface (JNI) [13],
foreign function interfaces that allow C and Java code to be
called from PL/I. Micro Focus has a C and C++ FFI in their
commercial ACUCOBOL-GT modernisation portfolio, and
interoperability between COBOL and Java and .NET [25].
Similarly, Raincode offers interoperability with C# in their
compiler [30], and Fujitsu with Visual Basic in theirs [8].

The only open source implementation of COBOL, with or
without FFI, available to the general public, is GnuCobol, also
known as OpenCobol [26]. Essentially it compiles COBOL to
C, and that fact can be used for interoperability purposes if
one is sufficiently familiar with the internals of the compiler.
Its FFI functionality is built on top of another open source
library called libffi [9]. GnuCobol is an interesting subject
of study for academics, but due to its (L)GPL licensing it often
cannot be considered in a commercial setting. Additionally,
GnuCobol is also essentially its own dialect of COBOL, so
migrating to this compiler implies code changes.
Commercial compilers with a C-COBOL interface are

sometimes based on external function prototypes — besides
being proprietary, they expose many compiler internals to
initialise, stop, manipulate runtime data, and leave data con-
version to programmers to code explicitly. Unlike them,
Crossover brings COBOL semantics to C where desired,

82

GPCE ’23, October 22–23, 2023, Cascais, Portugal van Assen, Ntagengerwa, Sayilir, and Zaytsev

with its bespoke runtime conversion between data repre-
sentations across the language bridge without loss of data
validity.

Deep considerations for COBOL data semantics are scarce
in the academic literature, but occasionally discussed in
smaller consortia like IFIP Working Groups. For instance,
Andersson [2] provides an excellently professional overview
of the data philosophy of COBOL and its implications on
reverse engineering endeavours, providing solution sketches
for particularly problematic features like implicitly modelled
references between records, and internally unspecified fields.
Data model discovery, as the process of extracting reusable
conceptual data (meta)models from entangled mazes of par-
tially duplicate PICTURE-based definitions, has also some-
times been described as a part of larger renovation packages
like COBOL/SRE [6]. Such activities are often going way
beyond interoperability and tend to include pragmatic trans-
formations that are provably and obviously wrong in the
formal sense, but “good enough” to aid modernisation efforts.
For example, Ueda and Ohara from IBM proposed to merge
records with similar data layout and somewhat similar field
names [40].
In contrast to our FFI/ABI based solution, some take an

alternative path with a CORBA-based approach, which re-
lies on a middleware architecture for communication among
different languages and platforms. On that path, examples of
relevant standards and specifications could be CORBA [27,
1991–2021] or SOAP [41, 1998–2007]. One can also design
solutions based on RESTful APIs or Remote Procedure Calls
(RPC). A compiler-based solution like the one we proposed,
might seem more complex to implement, but it eliminates
the need for complex middleware layers, potentially reduc-
ing overhead and enhancing performance, while providing
greater flexibility and allowing for fine-tuned control over
the interaction between COBOL and C components.

7 Concluding Remarks
COBOL/C interoperability has not been satisfactorily solved
in decades of language coexistence, despite industrial need,
which shows the issue being at least somewhat challenging.
In this paper, we have examined how interoperability be-
tween the languages BabyCobol and C could be achieved.
The resulting Crossover compiler can serve as a guiding
blueprint for developers implementing similar bridges in the
context of real large legacy languages such as COBOL or
PL/I. Its implementation is released as open source for the
sake of reproducibility [33].
There were two research questions to be answered: the

first one on how a foreign function interface between Baby-
Cobol and C could be realised, and the other one about how
the key data differences between BabyCobol and C could be
addressed.

We address the first question by proposing a solution us-
ing LLVM as the framework for our compiler, allowing us
to generate ELF object files. This is the same binary format
that C code is usually compiled to on Linux systems. Having
the source code of both languages compiled into ELF files
allows them to be linked into one executable. Both C and
our implementation of BabyCobol (supported by our lan-
guage extensions) allow for external procedure calls. This
allows for calling foreign functions that are defined in other
compilation units, including those originating from other
languages.
To address the second research question, we proposed a

solution where data creation, modification and marshalling
within Crossover is handled by a library that functions both
as a standard library and a runtime library; the BSTD. The
BSTD is used on both sides of the communication, either
by developers directly or by the compiler generating appro-
priate glue code. On the side of C, the library introduces
BabyCobol data types and semantics to the C environment
and provides the developer with tools to create and mod-
ify variables of these data types, as well as functionality to
convert data into instances of native C data types. On the
BabyCobol side, the BSTD is implemented in such a way
that Crossover makes use of the foreign function interface
to construct function calls to the runtime library. The func-
tions are then invoked at runtime whenever data is created
or modified. This bridges the gap between BabyCobol fields
and records, on one side, and C basic data types and structs,
on the other.
Crossover is a minimal implementation of BabyCobol,

which mainly implements features that directly impact in-
teroperability, such as data definition, manipulation, and
function invocation. By limiting the scope of the implemen-
tation, we could focus on the challenges of implementing
interoperability instead of the rest of the language, acceler-
ating the development of this solution.

The strategy described in this paper, is meant for interop-
erability between BabyCobol and C. The concepts of Baby-
Cobol which are important for interoperability(such as the
data definitions in the DATA DIVISION and data exchange in
the CALL statement), are a strict subset and simplification of
their counterparts in COBOL. Hence, the strategy proposed
in this paper could be applied similarly to achieve interoper-
ability between COBOL and C. However, since COBOL has
more features and higher complexity than BabyCobol, there
may be issues that have not arisen in our project thus far
that could come up when applying the interoperability strat-
egy between COBOL and C. From our prior experience with
COBOL, we foresee some minor additional implementation
challenges dealing with REDEFINES and FILLER clauses and
their interaction with the INITIALIZE statement. These chal-
lenges, albeit non-trivial, are purely engineering in nature,
and no further research challenges should arise. For instance,
when REDEFINES gives two alternative representations of

83

Crossover: Towards Compiler-Enabled COBOL-C Interoperability GPCE ’23, October 22–23, 2023, Cascais, Portugal

the same memory fragment, C can handle it with several
structs and manipulating pointers to them.

Finally, an interesting research direction would be to apply
the approach introduced in this paper to implement interop-
erability with other languages that compile to ELF object files.
This would allow users to incorporate their code written in
these languages without using C as a bridge as described in
Section 4.6. The major challenge in undertaking this would
be to write or generate a BSTD-like library for the target
language to allow for marshalling and manipulating data at
runtime.
Designing Crossover required much careful considera-

tion, data semantics alignment, and ample experimentation.
We hope that opening its design contributes to the field of
software maintenance by exposing the general public to the
problem instead of keeping it in the ever shrinking legacy
developer pool.

Acknowledgements
The authors express their gratitude to the GPCE programme
committee members for their efforts and expertise in review-
ing this document. We are especially grateful to Julia Lawall
for shepherding the last steps. We also appreciate advice,
encouragement and interest in this project from Raincode
engineers Johan Fabry and Darius Blasband, as well as for the
participants of the Formal Methods and Tools Colloquium
on 1 June 2023 for their feedback.

References
[1] Daniel Adler. 2012. Foreign Library Interface. The R Journal 4, 1 (2012),

30. https://doi.org/10.32614/rj-2012-004
[2] Martin Andersson. 1998. Searching for Semantics in COBOL Legacy

Applications. In Data Mining and Reverse Engineering: Searching for
semantics. IFIP TC2 WG2.6 IFIP Seventh Conference on Database Se-
mantics (DS-7) 7–10 October 1997, Leysin, Switzerland, Stefano Spac-
capietra and Fred Maryanski (Eds.). Springer, Boston, MA, 162–183.
https://doi.org/10.1007/978-0-387-35300-5_8

[3] Volodymyr Blagodarov, Yves Jaradin, and Vadim Zaytsev. 2016. Tool
Demo: Raincode Assembler Compiler. In Proceedings of the Ninth In-
ternational Conference on Software Language Engineering (SLE), Tijs
van der Storm, Emilie Balland, and Dániel Varró (Eds.). ACM, Amster-
dam, 221–225. https://doi.org/10.1145/2997364.2997387

[4] David Cassel. 2017. COBOL Is Everywhere. Who Will Maintain It?
https://thenewstack.io/cobol-everywhere-will-maintain/.

[5] Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and
Jeremy G. Siek. 2019. Gradual Typing: A New Perspective. Proceedings
of the ACM on Programming Languages 3, POPL (2019), 1–32.

[6] A. Engberts, W. Kozaczynski, E. Liongosari, and J.Q. Ning. 1993.
COBOL/SRE: A COBOL System Renovation Environment. In Proceed-
ings of Sixth International Workshop on Computer-Aided Software Engi-
neering. IEEE, Singapore, 199–210. https://doi.org/10.1109/CASE.1993.
634821

[7] Free Software Foundation. 1998. GNU Binutils. https://sourceware.
org/binutils/

[8] Fujitsu. 2015. FUJITSU Software NetCOBOL V11.0. Getting
Started. Integrating COBOL Programs with Visual Basic.
https://software.fujitsu.com/jp/manual/manualfiles/m150009/
b1wd3354/01enz200/b3354-00-03-02-00.html.

[9] AnthonyGreen, RichardHenderson, Josh Triplett, ZacharyWaldowski,
Landon Fuller, et al. 1996. libffi. https://github.com/libffi/libffi.

[10] Dick Grune, Kees van Reeuwijk, Henri E. Bal, Ceriel J. H. Jacobs, and
Koen G. Langendoen. 2012. Modern Compiler Design (second ed.).
Addison-Wesley, New York, NY, USA. https://dickgrune.com/Books/
MCD_2nd_Edition/

[11] Travis Hartman. 2017. COBOL blues. Reuters Graph-
ics, http://fingfx.thomsonreuters.com/gfx/rngs/USA-BANKS-COBOL/
010040KH18J/index.html.

[12] John L. Hennessy and David A. Patterson. 2019. Computer Architec-
ture: A Quantitative Approach. Appendix K: Survey of Instruction Set
Architectures (sixth ed.). Morgan Kaufman Publishers, Waltham, MA,
USA.

[13] IBM. 2019. Enterprise PL/I for z/OS Programming Guide Version 5
Release 3.

[14] IBM Library. 1987. SX26-3721-05: VS COBOL II Application Program-
ming Reference Summary, Release 4. IBM. https://publibz.boulder.ibm.
com/cgi-bin/bookmgr_OS390/BOOKS/IGYR1101/CCONTENTS.

[15] Burnstein Ilene. 2003. Practical Software Testing: A Process-Oriented
Approach. Springer, New York, NY, USA.

[16] Feargus Illingworth et al. 2022. 2022 Mainframe Modernization Business
Barometer Report. Technical Report. Advanced. https://modernsystems.
oneadvanced.com/en/reports/modernisation2022/.

[17] ISO/IEC JTC 1/SC 22. 2018. ISO/IEC 9899:2018: Information
Technology—Programming Languages—C. International Organization
for Standardization. https://www.iso.org/standard/74528.html.

[18] Julia Programming Language. 2023. Calling C and Fortran Code —
The Julia Language. https://docs.julialang.org/en/v1/manual/calling-
c-and-fortran-code/.

[19] Ralf Lämmel and Kris De Schutter. 2005. What Does Aspect-Oriented
ProgrammingMean to Cobol?. In Proceedings of the Fourth International
Conference on Aspect-Oriented Software Development (AOSD). ACM,
New York, NY, USA, 99–110. https://doi.org/10.1145/1052898.1052907

[20] Adriaan Larmuseau and Dave Clarke. 2015. Formalizing a Secure
Foreign Function Interface. LNCS 9276 (2015), 215–230. https://doi.
org/10.1007/978-3-319-22969-0_16

[21] Chris Lattner and Vikram S. Adve. 2004. LLVM: A Compilation Frame-
work for Lifelong Program Analysis & Transformation. In Proceedings
of the Second IEEE / ACM International Symposium on Code Generation
and Optimization (CGO). IEEE Computer Society, San Jose, CA, USA,
75–88. https://doi.org/10.1109/CGO.2004.1281665 https://llvm.org.

[22] Vadim Maslov. 1998. Re: An Odd Grammar Question. http://compilers.
iecc.com/comparch/article/98-05-108.

[23] MathWorks. 2023. External Language Interfaces — MATLAB &
Simulink — MathWorks. https://www.mathworks.com/help/matlab/
external-language-interfaces.html.

[24] Joris Mertens. 2020. IBM zSystems fundamentals: An introductory
Q&A. https://developer.ibm.com/articles/what-is-ibm-z/.

[25] Micro Focus. 2014. A Guide to Interoperating with ACUCOBOL-GT
Version 9.2.5. https://www.microfocus.com/documentation/extend-
acucobol/925/GUID-0617E68F-C102-4A3B-9797-279F653777D7.
html.

[26] Keisuke Nishida, Roger While, Edward Hart, Sergey Kashyrin, Ron
Norman, Simon Sobisch, et al. 2002. GnuCOBOL: A free/libre COBOL
compiler. https://gnucobol.sourceforge.io.

[27] OMG. 2012. Common Object Request Broker Architecture (CORBA)
Specification (3.3 ed.). Object Management Group. https://www.omg.
org/spec/CORBA/3.4/

[28] Terence Parr. 2023. ANTLR—ANother Tool for Language Recognition,
release 4.12.0. http://antlr.org.

[29] Guillermo Polito, Stéphane Ducasse, Pablo Tesone, and Ted Brunzie.
2017. Unified FFI — Calling Foreign Functions from Pharo. Pharo.org,
CC-BY-SA. https://books.pharo.org/booklet-uffi/

84

https://doi.org/10.32614/rj-2012-004
https://doi.org/10.1007/978-0-387-35300-5_8
https://doi.org/10.1145/2997364.2997387
https://thenewstack.io/cobol-everywhere-will-maintain/
https://doi.org/10.1109/CASE.1993.634821
https://doi.org/10.1109/CASE.1993.634821
https://sourceware.org/binutils/
https://sourceware.org/binutils/
https://software.fujitsu.com/jp/manual/manualfiles/m150009/b1wd3354/01enz200/b3354-00-03-02-00.html
https://software.fujitsu.com/jp/manual/manualfiles/m150009/b1wd3354/01enz200/b3354-00-03-02-00.html
https://github.com/libffi/libffi
https://dickgrune.com/Books/MCD_2nd_Edition/
https://dickgrune.com/Books/MCD_2nd_Edition/
http://fingfx.thomsonreuters.com/gfx/rngs/USA-BANKS-COBOL/010040KH18J/index.html
http://fingfx.thomsonreuters.com/gfx/rngs/USA-BANKS-COBOL/010040KH18J/index.html
https://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/IGYR1101/CCONTENTS
https://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/IGYR1101/CCONTENTS
https://modernsystems.oneadvanced.com/en/reports/modernisation2022/
https://modernsystems.oneadvanced.com/en/reports/modernisation2022/
https://www.iso.org/standard/74528.html
https://docs.julialang.org/en/v1/manual/calling-c-and-fortran-code/
https://docs.julialang.org/en/v1/manual/calling-c-and-fortran-code/
https://doi.org/10.1145/1052898.1052907
https://doi.org/10.1007/978-3-319-22969-0_16
https://doi.org/10.1007/978-3-319-22969-0_16
https://doi.org/10.1109/CGO.2004.1281665
https://llvm.org
http://compilers.iecc.com/comparch/article/98-05-108
http://compilers.iecc.com/comparch/article/98-05-108
https://www.mathworks.com/help/matlab/external-language-interfaces.html
https://www.mathworks.com/help/matlab/external-language-interfaces.html
https://developer.ibm.com/articles/what-is-ibm-z/
https://www.microfocus.com/documentation/extend-acucobol/925/GUID-0617E68F-C102-4A3B-9797-279F653777D7.html
https://www.microfocus.com/documentation/extend-acucobol/925/GUID-0617E68F-C102-4A3B-9797-279F653777D7.html
https://www.microfocus.com/documentation/extend-acucobol/925/GUID-0617E68F-C102-4A3B-9797-279F653777D7.html
https://gnucobol.sourceforge.io
https://www.omg.org/spec/CORBA/3.4/
https://www.omg.org/spec/CORBA/3.4/
http://antlr.org
https://books.pharo.org/booklet-uffi/

GPCE ’23, October 22–23, 2023, Cascais, Portugal van Assen, Ntagengerwa, Sayilir, and Zaytsev

[30] Raincode. 2023. How Can I Migrate My COBOL Applications to the
Cloud? https://www.raincode.com/cobol/.

[31] Armin Rigo and Maciej Fijalkowski. 2018. CFFI 1.15.1 documentation.
https://cffi.readthedocs.io/en/latest/.

[32] Rust Programming Language. 2021. FFI — The Rustonomicon. https:
//doc.rust-lang.org/nomicon/ffi.html.

[33] Ömer F. Sayilir, M. Aimé Ntagengerwa, and Mart H. van Assen. 2023.
Crossover. https://github.com/Crossover-Compiler/Crossover.

[34] Christian A. Schafmeister and Alex Wood. 2018. Clasp: Common Lisp
Implementation and Optimization. In Proceedings of the 11th European
Lisp Symposium (ELS). European Lisp Scientific Activities Association,
Marbella, Spain, Article 8, 6 pages.

[35] Christian E. Schafmeister. 2015. Clasp — A Common Lisp that Inter-
operates with C++ and Uses the LLVM Backend. In Proceedings of the
Eighth European Lisp Symposium (ELS). ELS, London, UK, 90–91.

[36] SCO Developer Network. 2014. System V Application Binary Inter-
face. Chapter 4. https://www.sco.com/developers/gabi/latest/ch4.intro.
html.

[37] Jeremy G. Siek and Walid Taha. 2007. Gradual Typing for Objects.
In Proceedings of the 21st European Conference on Object-Oriented Pro-
gramming (ECOOP) (LNCS, Vol. 4609). Springer, Berlin, Heidelberg,
2–27. https://doi.org/10.1007/978-3-540-73589-2_2

[38] Harry M. Sneed. 1992. Migration of Procedurally Oriented COBOL Pro-
grams in an Object-Oriented Architecture. In Proceedings of the Eighth

International Conference on Software Maintenance. IEEE, Orlando, FL,
USA, 105–116. https://doi.org/10.1109/ICSM.1992.242552

[39] Andrey A. Terekhov and Chris Verhoef. 2000. The Realities of Lan-
guage Conversions. IEEE Software 17, 6 (2000), 111–124. https:
//doi.org/10.1109/52.895180

[40] Yohei Ueda and Moriyoshi Ohara. 2014. Refactoring of COBOL Data
Models Based on Similarities of Data Field Name. Technical Report.
IBM.

[41] W3C. 2007. Simple Object Access Protocol (SOAP) (1.2 ed.). World Wide
Web Consortium. https://www.w3.org/TR/soap/

[42] David S. Wile. 2001. Supporting the DSL Spectrum. Journal of Com-
puting and Information Technology 9, 4 (2001), 263–287.

[43] Xinuos Inc. 2013. Developers | SCO Developer Network. https:
//www.sco.com/developers/gabi/

[44] Vadim Zaytsev. 2020. Modelling of Language Syntax and Semantics:
The Case of the Assembler Compiler. Proceedings of the 16th European
Conference on Modelling Foundations and Applications (ECMFA) 19 (July
2020), 22 pages. Issue 2. https://doi.org/10.5381/jot.2020.19.2.a5

[45] Vadim Zaytsev. 2020. Software Language Engineers’ Worst Nightmare.
In Proceedings of the 13th International Conference on Software Language
Engineering (SLE). ACM, New York, NY, USA, 72–85. https://doi.org/
10.1145/3426425.3426933

Received 2023-07-14; accepted 2023-09-03

85

https://www.raincode.com/cobol/
https://cffi.readthedocs.io/en/latest/
https://doc.rust-lang.org/nomicon/ffi.html
https://doc.rust-lang.org/nomicon/ffi.html
https://github.com/Crossover-Compiler/Crossover
https://www.sco.com/developers/gabi/latest/ch4.intro.html
https://www.sco.com/developers/gabi/latest/ch4.intro.html
https://doi.org/10.1007/978-3-540-73589-2_2
https://doi.org/10.1109/ICSM.1992.242552
https://doi.org/10.1109/52.895180
https://doi.org/10.1109/52.895180
https://www.w3.org/TR/soap/
https://www.sco.com/developers/gabi/
https://www.sco.com/developers/gabi/
https://doi.org/10.5381/jot.2020.19.2.a5
https://doi.org/10.1145/3426425.3426933
https://doi.org/10.1145/3426425.3426933

	Abstract
	1 Introduction
	2 Background
	2.1 BabyCobol
	2.2 Foreign Function Interface
	2.3 Application Binary Interface
	2.4 Standard Libraries and Language Runtimes
	2.5 BabyCobol vs. C

	3 Problem Statement
	4 Design and Implementation
	4.1 Toolchain Overview
	4.2 BabyCobol Standard Library: BSTD
	4.3 Linking
	4.4 Language Extensions
	4.5 Data Type Constraints and Data Integrity
	4.6 C as a Bridge

	5 Evaluation
	5.1 Testing
	5.2 Performance Evaluation
	5.3 Demonstration

	6 Related Work
	7 Concluding Remarks
	References

